BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16511516)

  • 81. Mouse Xenograft Model for Intraperitoneal Administration of NK Cell Immunotherapy for Ovarian Cancer.
    Hermanson DL; Bendzick L; Kaufman DS
    Methods Mol Biol; 2016; 1441():277-84. PubMed ID: 27177674
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Analysis of the colonization of unirradiated and irradiated SCID mice by human lymphoma and non-malignant lymphoid cells.
    Zubair AC; Ali SA; Rees RC; Goepel JR; Winfield DA; Goyns MH
    Leuk Lymphoma; 1996 Aug; 22(5-6):463-71. PubMed ID: 8882960
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Induction of human pluripotent stem cell-derived natural killer cells for immunotherapy under chemically defined conditions.
    Matsubara H; Niwa A; Nakahata T; Saito MK
    Biochem Biophys Res Commun; 2019 Jul; 515(1):1-8. PubMed ID: 30948156
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Emerging natural killer cell immunotherapies: large-scale ex vivo production of highly potent anticancer effectors.
    Suck G; Koh MB
    Hematol Oncol Stem Cell Ther; 2010; 3(3):135-42. PubMed ID: 20890071
    [TBL] [Abstract][Full Text] [Related]  

  • 85. In Vivo (19)F-Magnetic Resonance Imaging of Adoptively Transferred NK Cells.
    Somanchi SS; Kennis BA; Gopalakrishnan V; Lee DA; Bankson JA
    Methods Mol Biol; 2016; 1441():317-32. PubMed ID: 27177678
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Evidence of a role for NK cells in oxazaphosphorine-mediated tumor regression.
    Reissmann T; Hilgard P; Voegeli R; Zeller J
    J Cancer Res Clin Oncol; 1989; 115(6):525-30. PubMed ID: 2606928
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Natural killer cells: from bench to cancer therapy.
    Boyiadzis M; Foon KA
    Expert Opin Biol Ther; 2006 Oct; 6(10):967-70. PubMed ID: 16989578
    [TBL] [Abstract][Full Text] [Related]  

  • 88. MHC-unrestricted immune surveillance of leukemia.
    Pawelec G
    Cancer Biother; 1994; 9(3):265-88. PubMed ID: 7820187
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.
    Malviya G; Nayak T; Gerdes C; Dierckx RA; Signore A; de Vries EF
    Mol Pharm; 2016 Apr; 13(4):1329-38. PubMed ID: 26962716
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Comparison of Ex Vivo Expanded and Highly Purified NK Cell-Mediated Cytotoxicity Detected by 3 Different Staining Methods of Flow Cytometry].
    Guo JQ; Han YP; Li F; Zhao Q; Jia Y; Jin BL; Zhang JP
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Dec; 24(6):1691-1697. PubMed ID: 28024478
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity.
    Woll PS; Grzywacz B; Tian X; Marcus RK; Knorr DA; Verneris MR; Kaufman DS
    Blood; 2009 Jun; 113(24):6094-101. PubMed ID: 19365083
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Human neuroblastoma cell growth in xenogeneic hosts: comparison of T cell-deficient and NK-deficient hosts, and subcutaneous or intravenous injection routes.
    Turner WJ; Chatten J; Lampson LA
    J Neurooncol; 1990 Apr; 8(2):121-32. PubMed ID: 2358846
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Identification of Functional Fragments in gMYL6 and the Mechanism of Improving NK Cell-Mediated Cytotoxicity.
    Ji Y; Cao R; Lv G; Jin Y; Chen J
    Iran J Immunol; 2020 Dec; 17(4):292-302. PubMed ID: 33382386
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.
    Lapteva N; Parihar R; Rollins LA; Gee AP; Rooney CM
    Methods Mol Biol; 2016; 1441():195-202. PubMed ID: 27177667
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model.
    Siegers GM; Felizardo TC; Mathieson AM; Kosaka Y; Wang XH; Medin JA; Keating A
    PLoS One; 2011 Feb; 6(2):e16700. PubMed ID: 21304898
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Flow cytometry-based
    Wong P; Wagner JA; Berrien-Elliott MM; Schappe T; Fehniger TA
    STAR Protoc; 2021 Mar; 2(1):100262. PubMed ID: 33490978
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Combined NK Cell Therapy and Radiation Therapy Exhibit Long-Term Therapeutic and Antimetastatic Effects in a Human Triple Negative Breast Cancer Model.
    Kim KW; Jeong JU; Lee KH; Uong TNT; Rhee JH; Ahn SJ; Kim SK; Cho D; Quang Nguyen HP; Pham CT; Yoon MS
    Int J Radiat Oncol Biol Phys; 2020 Sep; 108(1):115-125. PubMed ID: 31605787
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Role of natural effector cells in the prevention of radiation-induced leukemogenesis.
    Datta SK
    Biomed Pharmacother; 1996; 50(3-4):125-31. PubMed ID: 8881368
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Low natural in vivo resistance to syngeneic leukaemias in natural killer-deficient mice.
    Kärre K; Klein GO; Kiessling R; Klein G; Roder JC
    Nature; 1980 Apr; 284(5757):624-6. PubMed ID: 7366734
    [No Abstract]   [Full Text] [Related]  

  • 100. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: A comprehensive review.
    Jin KT; Du WL; Lan HR; Liu YY; Mao CS; Du JL; Mou XZ
    Cancer Sci; 2021 Jul; 112(7):2592-2606. PubMed ID: 33938090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.