BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 16511622)

  • 1. Characterization of a membrane-based gradient generator for use in cell-signaling studies.
    Abhyankar VV; Lokuta MA; Huttenlocher A; Beebe DJ
    Lab Chip; 2006 Mar; 6(3):389-93. PubMed ID: 16511622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microfluidic palette: a diffusive gradient generator with spatio-temporal control.
    Atencia J; Morrow J; Locascio LE
    Lab Chip; 2009 Sep; 9(18):2707-14. PubMed ID: 19704987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
    Melin J; van der Wijngaart W; Stemme G
    Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust diffusion-based gradient generator for dynamic cell assays.
    Atencia J; Cooksey GA; Locascio LE
    Lab Chip; 2012 Jan; 12(2):309-16. PubMed ID: 22113489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid spatial and temporal controlled signal delivery over large cell culture areas.
    VanDersarl JJ; Xu AM; Melosh NA
    Lab Chip; 2011 Sep; 11(18):3057-63. PubMed ID: 21805010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a recursively-structured valveless device for microfluidic manipulation.
    Chung YC; Jen CP; Lin YC; Wu CY; Wu TC
    Lab Chip; 2003 Aug; 3(3):168-72. PubMed ID: 15100769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase change microvalve for integrated devices.
    Pal R; Yang M; Johnson BN; Burke DT; Burns MA
    Anal Chem; 2004 Jul; 76(13):3740-8. PubMed ID: 15228349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plug and play microfluidic device.
    Fujii T; Sando Y; Higashino K; Fujii Y
    Lab Chip; 2003 Aug; 3(3):193-7. PubMed ID: 15100773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic valve with cored glass microneedle for microinjection.
    Lee S; Jeong W; Beebe DJ
    Lab Chip; 2003 Aug; 3(3):164-7. PubMed ID: 15100768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of non-specific adsorption using sheath flow.
    Munson MS; Hasenbank MS; Fu E; Yager P
    Lab Chip; 2004 Oct; 4(5):438-45. PubMed ID: 15472727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial mixing of microfluidic streams.
    Neils C; Tyree Z; Finlayson B; Folch A
    Lab Chip; 2004 Aug; 4(4):342-50. PubMed ID: 15269802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic channel.
    Fleming KK; Longmire EK; Hubel A
    J Biomech Eng; 2007 Oct; 129(5):703-11. PubMed ID: 17887896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional chemical profile manipulation using two-dimensional autonomous microfluidic control.
    Kim Y; Pekkan K; Messner WC; Leduc PR
    J Am Chem Soc; 2010 Feb; 132(4):1339-47. PubMed ID: 20063880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic tools for quantitative studies of eukaryotic chemotaxis.
    Beta C; Bodenschatz E
    Eur J Cell Biol; 2011 Oct; 90(10):811-6. PubMed ID: 21783273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.