BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 16511629)

  • 1. Biomimetic design of microfluidic manifolds based on a generalised Murray's law.
    Emerson DR; Cieślicki K; Gu X; Barber RW
    Lab Chip; 2006 Mar; 6(3):447-54. PubMed ID: 16511629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Murray's law for optimised fluid transport in synthetic structures.
    Zhou B; Cheng Q; Chen Z; Chen Z; Liang D; Munro EA; Yun G; Kawai Y; Chen J; Bhowmick T; Padmanathan KK; Occhipinti LG; Matsumoto H; Gardner JW; Su BL; Hasan T
    Nat Commun; 2024 May; 15(1):3652. PubMed ID: 38714661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method.
    Lim D; Kamotani Y; Cho B; Mazumder J; Takayama S
    Lab Chip; 2003 Nov; 3(4):318-23. PubMed ID: 15007466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lepidoptera demonstrate the relevance of Murray's Law to circulatory systems with tidal flow.
    Schachat SR; Boyce CK; Payne JL; Lentink D
    BMC Biol; 2021 Sep; 19(1):204. PubMed ID: 34526028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks.
    Osborn JL; Lutz B; Fu E; Kauffman P; Stevens DY; Yager P
    Lab Chip; 2010 Oct; 10(20):2659-65. PubMed ID: 20680208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a biomimetic microfluidic oxygen transfer device.
    Gimbel AA; Flores E; Koo A; García-Cardeña G; Borenstein JT
    Lab Chip; 2016 Aug; 16(17):3227-34. PubMed ID: 27411972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput cell and spheroid mechanics in virtual fluidic channels.
    Panhwar MH; Czerwinski F; Dabbiru VAS; Komaragiri Y; Fregin B; Biedenweg D; Nestler P; Pires RH; Otto O
    Nat Commun; 2020 May; 11(1):2190. PubMed ID: 32366850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic review and meta-analysis of Murray's law in the coronary arterial circulation.
    Taylor DJ; Saxton H; Halliday I; Newman T; Hose DR; Kassab GS; Gunn JP; Morris PD
    Am J Physiol Heart Circ Physiol; 2024 Jul; 327(1):H182-H190. PubMed ID: 38787386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device.
    Shevkoplyas SS; Yoshida T; Munn LL; Bitensky MW
    Anal Chem; 2005 Feb; 77(3):933-7. PubMed ID: 15679363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design rules for pumping and metering of highly viscous fluids in microfluidics.
    Perry SL; Higdon JJ; Kenis PJ
    Lab Chip; 2010 Nov; 10(22):3112-24. PubMed ID: 20877780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agent-based simulations of complex droplet pattern formation in a two-branch microfluidic network.
    Smith BJ; Gaver DP
    Lab Chip; 2010 Feb; 10(3):303-12. PubMed ID: 20091001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branching Exponents of Synthetic Vascular Trees Under Different Optimality Principles.
    Jessen E; Steinbach MC; Debbaut C; Schillinger D
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1345-1354. PubMed ID: 37983147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic approaches to control soluble concentration gradients in biomaterials.
    Nguyen EH; Schwartz MP; Murphy WL
    Macromol Biosci; 2011 Apr; 11(4):483-92. PubMed ID: 21265021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The narrowing of dendrite branches across nodes follows a well-defined scaling law.
    Liao M; Liang X; Howard J
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34215693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radius exponent in elastic and rigid arterial models optimized by the least energy principle.
    Nakamura Y; Awa S
    Physiol Rep; 2014 Feb; 2(2):e00236. PubMed ID: 24744905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchy in materials for maximized efficiency.
    Chen LH; Li Y; Su BL
    Natl Sci Rev; 2020 Nov; 7(11):1626-1630. PubMed ID: 34691495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired microfluidics: A review.
    Raj M K; Priyadarshani J; Karan P; Bandyopadhyay S; Bhattacharya S; Chakraborty S
    Biomicrofluidics; 2023 Sep; 17(5):051503. PubMed ID: 37781135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building Blood Vessel Chips with Enhanced Physiological Relevance.
    Mu X; Gerhard-Herman MD; Zhang YS
    Adv Mater Technol; 2023 Apr; 8(7):. PubMed ID: 37693798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering.
    Chen J; Zhang D; Wu LP; Zhao M
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Clinical-Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks.
    Isenberg BC; Vedula EM; Santos J; Lewis DJ; Roberts TR; Harea G; Sutherland D; Landis B; Blumenstiel S; Urban J; Lang D; Teece B; Lai W; Keating R; Chiang D; Batchinsky AI; Borenstein JT
    Adv Sci (Weinh); 2023 Jun; 10(18):e2207455. PubMed ID: 37092588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.