These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 16511816)
1. A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Valot B; Negroni L; Zivy M; Gianinazzi S; Dumas-Gaudot E Proteomics; 2006 Apr; 6 Suppl 1():S145-55. PubMed ID: 16511816 [TBL] [Abstract][Full Text] [Related]
2. Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Seddas PM; Arias CM; Arnould C; van Tuinen D; Godfroy O; Benhassou HA; Gouzy J; Morandi D; Dessaint F; Gianinazzi-Pearson V Mol Plant Microbe Interact; 2009 Mar; 22(3):341-51. PubMed ID: 19245328 [TBL] [Abstract][Full Text] [Related]
3. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
4. Metabolite profiling of mycorrhizal roots of Medicago truncatula. Schliemann W; Ammer C; Strack D Phytochemistry; 2008 Jan; 69(1):112-46. PubMed ID: 17706732 [TBL] [Abstract][Full Text] [Related]
5. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Recorbet G; Valot B; Robert F; Gianinazzi-Pearson V; Dumas-Gaudot E Fungal Genet Biol; 2010 Jul; 47(7):608-18. PubMed ID: 20226871 [TBL] [Abstract][Full Text] [Related]
6. Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza. Amiour N; Recorbet G; Robert F; Gianinazzi S; Dumas-Gaudot E Mol Plant Microbe Interact; 2006 Sep; 19(9):988-97. PubMed ID: 16941903 [TBL] [Abstract][Full Text] [Related]
7. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Liu J; Maldonado-Mendoza I; Lopez-Meyer M; Cheung F; Town CD; Harrison MJ Plant J; 2007 May; 50(3):529-44. PubMed ID: 17419842 [TBL] [Abstract][Full Text] [Related]
8. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
9. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Stumpe M; Carsjens JG; Stenzel I; Göbel C; Lang I; Pawlowski K; Hause B; Feussner I Phytochemistry; 2005 Apr; 66(7):781-91. PubMed ID: 15797604 [TBL] [Abstract][Full Text] [Related]
10. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Aloui A; Recorbet G; Gollotte A; Robert F; Valot B; Gianinazzi-Pearson V; Aschi-Smiti S; Dumas-Gaudot E Proteomics; 2009 Jan; 9(2):420-33. PubMed ID: 19072729 [TBL] [Abstract][Full Text] [Related]
11. Towards the elucidation of AM-specific transcription in Medicago truncatula. Krajinski F; Frenzel A Phytochemistry; 2007 Jan; 68(1):75-81. PubMed ID: 17141285 [TBL] [Abstract][Full Text] [Related]
12. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Floss DS; Hause B; Lange PR; Küster H; Strack D; Walter MH Plant J; 2008 Oct; 56(1):86-100. PubMed ID: 18557838 [TBL] [Abstract][Full Text] [Related]
14. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Ivanov S; Harrison MJ Plant J; 2014 Dec; 80(6):1151-63. PubMed ID: 25329881 [TBL] [Abstract][Full Text] [Related]
15. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Oláh B; Brière C; Bécard G; Dénarié J; Gough C Plant J; 2005 Oct; 44(2):195-207. PubMed ID: 16212600 [TBL] [Abstract][Full Text] [Related]
16. Gene expression analysis of arbuscule development and functioning. Franken P; Donges K; Grunwald U; Kost G; Rexer KH; Tamasloukht M; Waschke A; Zeuske D Phytochemistry; 2007 Jan; 68(1):68-74. PubMed ID: 17081578 [TBL] [Abstract][Full Text] [Related]
17. Proteomics as a way to identify extra-radicular fungal proteins from Glomus intraradices- RiT-DNA carrot root mycorrhizas. Dumas-Gaudot E; Valot B; Bestel-Corre G; Recorbet G; St-Arnaud M; Fontaine B; Dieu M; Raes M; Saravanan RS; Gianinazzi S FEMS Microbiol Ecol; 2004 Jun; 48(3):401-11. PubMed ID: 19712309 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Kobae Y; Hata S Plant Cell Physiol; 2010 Mar; 51(3):341-53. PubMed ID: 20097910 [TBL] [Abstract][Full Text] [Related]
19. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Hohnjec N; Vieweg MF; Pühler A; Becker A; Küster H Plant Physiol; 2005 Apr; 137(4):1283-301. PubMed ID: 15778460 [TBL] [Abstract][Full Text] [Related]