These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 16511829)
1. Cooperativity between Rad51 and C/EBP family transcription factors modulates basal and Tat-induced activation of the HIV-1 LTR in astrocytes. Chipitsyna G; Sawaya BE; Khalili K; Amini S J Cell Physiol; 2006 Jun; 207(3):605-13. PubMed ID: 16511829 [TBL] [Abstract][Full Text] [Related]
2. Cooperative interaction of C/EBP beta and Tat modulates MCP-1 gene transcription in astrocytes. Abraham S; Sweet T; Sawaya BE; Rappaport J; Khalili K; Amini S J Neuroimmunol; 2005 Mar; 160(1-2):219-27. PubMed ID: 15710476 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770 [TBL] [Abstract][Full Text] [Related]
4. Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator. Marcello A; Zoppé M; Giacca M IUBMB Life; 2001 Mar; 51(3):175-81. PubMed ID: 11547919 [TBL] [Abstract][Full Text] [Related]
5. Identification of a cellular protein that binds to Tat-responsive element of TGF beta-1 promoter in glial cells. Thatikunta P; Sawaya BE; Denisova L; Cole C; Yusibova G; Johnson EM; Khalili K; Amini S J Cell Biochem; 1997 Dec; 67(4):466-77. PubMed ID: 9383706 [TBL] [Abstract][Full Text] [Related]
6. Tat-dependent repression of human immunodeficiency virus type 1 long terminal repeat promoter activity by fusion of cellular transcription factors. Zhao C; Chen Y; Park J; Kim JB; Tang H Biochem Biophys Res Commun; 2004 Sep; 322(2):614-22. PubMed ID: 15325274 [TBL] [Abstract][Full Text] [Related]
7. HIV-1 regulatory protein tat induces RNA binding proteins in central nervous system cells that associate with the viral trans-acting-response regulatory motif. Kundu M; Ansari SA; Chepenik LG; Pomerantz RJ; Khalili K; Rappaport J; Amini S J Hum Virol; 1999; 2(2):72-80. PubMed ID: 10225209 [TBL] [Abstract][Full Text] [Related]
8. Interaction between TGFbeta signaling proteins and C/EBP controls basal and Tat-mediated transcription of HIV-1 LTR in astrocytes. Coyle-Rink J; Sweet T; Abraham S; Sawaya B; Batuman O; Khalili K; Amini S Virology; 2002 Aug; 299(2):240-7. PubMed ID: 12202226 [TBL] [Abstract][Full Text] [Related]
9. Drastic decrease of transcription activity due to hypermutated long terminal repeat (LTR) region in different HIV-1 subtypes and recombinants. de Arellano ER; Alcamí J; López M; Soriano V; Holguín A Antiviral Res; 2010 Nov; 88(2):152-9. PubMed ID: 20713090 [TBL] [Abstract][Full Text] [Related]
10. Functional similarities between HIV-1 Tat and DNA sequence-specific transcriptional activators. Madore SJ; Cullen BR Virology; 1995 Feb; 206(2):1150-4. PubMed ID: 7856090 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein. Zhang JL; Sharma PL; Crumpacker CS Virology; 2000 Mar; 268(2):251-63. PubMed ID: 10704334 [TBL] [Abstract][Full Text] [Related]
12. Stimulation of Tat-associated kinase-independent transcriptional elongation from the human immunodeficiency virus type-1 long terminal repeat by a cellular enhancer. West MJ; Karn J EMBO J; 1999 Mar; 18(5):1378-86. PubMed ID: 10064603 [TBL] [Abstract][Full Text] [Related]
13. Paracrine activation of the HIV-1 LTR promoter by the viral Tat protein is mechanistically similar to trans-activation within a cell. Verhoef K; Klein A; Berkhout B Virology; 1996 Nov; 225(2):316-27. PubMed ID: 8918918 [TBL] [Abstract][Full Text] [Related]
14. Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Roof P; Ricci M; Genin P; Montano MA; Essex M; Wainberg MA; Gatignol A; Hiscott J Virology; 2002 Apr; 296(1):77-83. PubMed ID: 12036319 [TBL] [Abstract][Full Text] [Related]
15. Luman, a new partner of HIV-1 TMgp41, interferes with Tat-mediated transcription of the HIV-1 LTR. Blot G; Lopez-Vergès S; Treand C; Kubat NJ; Delcroix-Genête D; Emiliani S; Benarous R; Berlioz-Torrent C J Mol Biol; 2006 Dec; 364(5):1034-47. PubMed ID: 17054986 [TBL] [Abstract][Full Text] [Related]
16. p27(SJ), a novel protein in St John's Wort, that suppresses expression of HIV-1 genome. Darbinian-Sarkissian N; Darbinyan A; Otte J; Radhakrishnan S; Sawaya BE; Arzumanyan A; Chipitsyna G; Popov Y; Rappaport J; Amini S; Khalili K Gene Ther; 2006 Feb; 13(4):288-95. PubMed ID: 16251997 [TBL] [Abstract][Full Text] [Related]
17. A protein phosphatase from human T cells augments tat transactivation of the human immunodeficiency virus type 1 long-terminal repeat. Bharucha DC; Zhou M; Nekhai S; Brady JN; Shukla RR; Kumar A Virology; 2002 Apr; 296(1):6-16. PubMed ID: 12036313 [TBL] [Abstract][Full Text] [Related]
18. Mutation of the major 5' splice site renders a CMV-driven HIV-1 proviral clone Tat-dependent: connections between transcription and splicing. Bohne J; Kräusslich HG FEBS Lett; 2004 Apr; 563(1-3):113-8. PubMed ID: 15063733 [TBL] [Abstract][Full Text] [Related]
19. Repression of the human immunodeficiency virus type-1 long terminal repeat by the c-Myc oncoprotein. Stojanova A; Caro C; Jarjour RJ; Oster SK; Penn LZ; Germinario RJ J Cell Biochem; 2004 May; 92(2):400-13. PubMed ID: 15108364 [TBL] [Abstract][Full Text] [Related]