BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16511875)

  • 21. Pulse shape of magnetic fields influences chick embryogenesis.
    Ubeda A; Leal J; Trillo MA; Jimenez MA; Delgado JM
    J Anat; 1983 Oct; 137 (Pt 3)(Pt 3):513-36. PubMed ID: 6654743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Health effects of occupational exposure to static magnetic fields used in magnetic resonance imaging: a review].
    Franco G; Perduri R; Murolo A
    Med Lav; 2008; 99(1):16-28. PubMed ID: 18254536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of electric fields on circadian rhythmicity in men.
    Wever R
    Life Sci Space Res; 1970; 8():177-87. PubMed ID: 11826883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of types of field used in nuclear magnetic resonance tomography on core and surface temperature in the human body. Results of in vitro and in vivo experiments].
    Vogl T; Lissner J; Seiderer M; Krimmel K; Sandner H
    Rofo; 1986 May; 144(5):591-6. PubMed ID: 3012687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of a weak variable super-low frequency magnetic field on the infradian rhythms of physiological systems, controlled by epiphysis].
    Temur'iants NA; Shekhotkin AV; Kamynina IB
    Biofizika; 1998; 43(5):783-8. PubMed ID: 9914839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute neurobehavioral effects of exposure to static magnetic fields: analyses of exposure-response relations.
    de Vocht F; Stevens T; van Wendel-de-Joode B; Engels H; Kromhout H
    J Magn Reson Imaging; 2006 Mar; 23(3):291-7. PubMed ID: 16463303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient complex oscillations in a closed chemical system with coupled autocatalysis.
    Zhao J; Chen Y; Wang J
    J Chem Phys; 2005 Mar; 122(11):114514. PubMed ID: 15836236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 14.6 mT ELF magnetic field exposure yields no DNA breaks in model system Salmonella, but provides evidence of heat stress protection.
    Williams PA; Ingebretsen RJ; Dawson RJ
    Bioelectromagnetics; 2006 Sep; 27(6):445-50. PubMed ID: 16732588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.
    Blagojević SM; Anić SR; Cupić ZD; Pejić ND; Kolar-Anić LZ
    Phys Chem Chem Phys; 2008 Nov; 10(44):6658-64. PubMed ID: 18989478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of the catalytic activity of free and immobilized peroxidase by extremely low frequency electromagnetic fields: dependence on frequency.
    Portaccio M; De Luca P; Durante D; Grano V; Rossi S; Bencivenga U; Lepore M; Mita DG
    Bioelectromagnetics; 2005 Feb; 26(2):145-52. PubMed ID: 15672368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics.
    Freire JG; Field RJ; Gallas JA
    J Chem Phys; 2009 Jul; 131(4):044105. PubMed ID: 19655835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A possible involvement of beta-endorphin, substance P, and serotonin in rat analgesia induced by extremely low frequency magnetic field.
    Bao X; Shi Y; Huo X; Song T
    Bioelectromagnetics; 2006 Sep; 27(6):467-72. PubMed ID: 16622860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beating polymer gels coupled with a nonlinear chemical reaction.
    Yoshida R; Kokufuta E; Yamaguchi T
    Chaos; 1999 Jun; 9(2):260-266. PubMed ID: 12779823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Electrolytic changes in the white mouse under the influence of weak magnetic fields].
    Schober A; Yanik M; Fischer G
    Zentralbl Bakteriol Mikrobiol Hyg B; 1982 Aug; 176(4):305-15. PubMed ID: 7148204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extremely-low frequency magnetic field effects on sulfate reducing bacteria viability.
    Fojt L; Strašák L; Vetterl V
    Electromagn Biol Med; 2010 Dec; 29(4):177-85. PubMed ID: 20923330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extremely low frequency 7 Hz 100 microT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT.
    Lisi A; Foletti A; Ledda M; Rosola E; Giuliani L; D'Emilia E; Grimaldi S
    Electromagn Biol Med; 2006; 25(4):269-80. PubMed ID: 17178586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-frequency transient electric and magnetic fields coupling to child body.
    Ozen S
    Radiat Prot Dosimetry; 2008; 128(1):62-7. PubMed ID: 17526911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the joint time-frequency characteristics of chemical oscillations.
    Darowicki K; Felisiak W
    J Comput Chem; 2006 Jun; 27(8):961-5. PubMed ID: 16586528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.