These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 16511875)
81. Impact of PDMS-Based Microfluidics on Belousov-Zhabotinsky Chemical Oscillators. Sheehy J; Hunter I; Moustaka ME; Aghvami SA; Fahmy Y; Fraden S J Phys Chem B; 2020 Dec; 124(51):11690-11698. PubMed ID: 33315410 [TBL] [Abstract][Full Text] [Related]
82. Microtesla extremely low frequency magnetic fields may ameliorate hypertension. Nishimura T; Mohri K; Tada H; Yamada J; Suzumura M; Fukushima M Georgian Med News; 2007 Sep; (150):30-4. PubMed ID: 17984560 [TBL] [Abstract][Full Text] [Related]
83. Long-term exposure to extremely low-frequency magnetic fields impairs spatial recognition memory in mice. Fu Y; Wang C; Wang J; Lei Y; Ma Y Clin Exp Pharmacol Physiol; 2008 Jul; 35(7):797-800. PubMed ID: 18346171 [TBL] [Abstract][Full Text] [Related]
84. Double resonance experiments in low magnetic field: dynamic polarization of protons by (14)N and measurement of low NQR frequencies. Seliger J; Zagar V J Magn Reson; 2009 Aug; 199(2):199-207. PubMed ID: 19464934 [TBL] [Abstract][Full Text] [Related]
85. [The effect of low magnetic field on select parameters of blood coagulation]. Ciejka E; Goraca A; Michalska M; Kostka B Pol Merkur Lekarski; 2005 Aug; 19(110):148-51. PubMed ID: 16245420 [TBL] [Abstract][Full Text] [Related]
86. [Effects of power frequency magnetic field on Ca2+ transport of skeletal muscle sarcoplasmic reticulum vesicles]. Liu RC; Zhou ZJ; Chu KP; Liu XL; Chen SD; Xia RH Zhonghua Yu Fang Yi Xue Za Zhi; 2006 May; 40(3):168-72. PubMed ID: 16836880 [TBL] [Abstract][Full Text] [Related]
87. Experimental and numeric investigation about electromagnetic interference between implantable cardiac pacemaker and magnetic fields at power line frequency. Della Chiara G; Mariani Primiani V; Moglie F Ann Ist Super Sanita; 2007; 43(3):248-53. PubMed ID: 17938455 [TBL] [Abstract][Full Text] [Related]
88. Light alters nociceptive effects of magnetic field shielding. Koziak AM; Desjardins D; Keenliside LD; Thomas AW; Prato FS Bioelectromagnetics; 2006 Jan; 27(1):10-5. PubMed ID: 16283641 [TBL] [Abstract][Full Text] [Related]
89. Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solutions. Alberto D; Busso L; Crotti G; Gandini M; Garfagnini R; Giudici P; Gnesi I; Manta F; Piragino G Electromagn Biol Med; 2008; 27(1):25-39. PubMed ID: 18327712 [TBL] [Abstract][Full Text] [Related]
90. Oxidation state of BZ reaction mixtures. Sobel SG; Hastings HM; Field RJ J Phys Chem A; 2006 Jan; 110(1):5-7. PubMed ID: 16392832 [TBL] [Abstract][Full Text] [Related]
91. Two pulse-coupled non-identical, frequency-different BZ oscillators with time delay. Lavrova AI; Vanag VK Phys Chem Chem Phys; 2014 Apr; 16(14):6764-72. PubMed ID: 24595595 [TBL] [Abstract][Full Text] [Related]
92. Photoexcited chemical wave in the ruthenium-catalyzed Belousov-Zhabotinsky reaction. Nakata S; Matsushita M; Sato T; Suematsu NJ; Kitahata H; Amemiya T; Mori Y J Phys Chem A; 2011 Jul; 115(26):7406-12. PubMed ID: 21563834 [TBL] [Abstract][Full Text] [Related]
93. Dynamic properties of Lednev's parametric resonance mechanism. Engström S Bioelectromagnetics; 1996; 17(1):58-70. PubMed ID: 8742757 [TBL] [Abstract][Full Text] [Related]
94. Modulation of the shape and speed of a chemical wave in an unstirred Belousov-Zhabotinsky reaction by a rotating magnet. Okano H; Kitahata H Bioelectromagnetics; 2013 Apr; 34(3):220-30. PubMed ID: 23124515 [TBL] [Abstract][Full Text] [Related]
95. Impact of the displacement current on low-frequency electromagnetic fields computed using high-resolution anatomy models. Barchanski A; De Gersem H; Gjonaj E; Weiland T Phys Med Biol; 2005 Oct; 50(19):N243-9. PubMed ID: 16177480 [TBL] [Abstract][Full Text] [Related]
96. Direct observation of periodic swelling and collapse of polymer chain induced by the Belousov-Zhabotinsky reaction. Hara Y; Mayama H; Yamaguchi Y; Takenaka Y; Fukuda R J Phys Chem B; 2013 Nov; 117(46):14351-7. PubMed ID: 24147635 [TBL] [Abstract][Full Text] [Related]
97. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators. Ohno K; Ogawa T; Suematsu NJ Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237 [TBL] [Abstract][Full Text] [Related]
98. Tuning the oscillatory dynamics of the Belousov-Zhabotinsky reaction using ruthenium nanoparticle decorated graphene. Prasanna Kumar DJ; Verma S; Jasuja K; Dayal P Phys Chem Chem Phys; 2019 Feb; 21(6):3164-3173. PubMed ID: 30676592 [TBL] [Abstract][Full Text] [Related]
99. Effect of noise correlation on noise-induced oscillation frequency in the photosensitive Belousov-Zhabotinsky reaction in a continuous stirred tank reactor. Simakov DS; Pérez-Mercader J J Phys Chem A; 2013 Dec; 117(51):13999-4005. PubMed ID: 24274189 [TBL] [Abstract][Full Text] [Related]
100. Chemical wave propagation preserved on an inhibitory field in the ruthenium-catalyzed Belousov-Zhabotinsky reaction. Nakata S; Ezaki T; Ikura YS; Kitahata H J Phys Chem A; 2013 Oct; 117(41):10615-8. PubMed ID: 24044665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]