These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 16512709)

  • 1. Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin I; Kaupp M
    J Chem Phys; 2006 Feb; 124(8):084108. PubMed ID: 16512709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient treatment of the Hartree interaction in the relativistic Kohn-Sham problem.
    Matveev AV; Majumder S; Rösch N
    J Chem Phys; 2005 Oct; 123(16):164104. PubMed ID: 16268678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory.
    Filatov M; Cremer D
    J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations.
    Neese F; Wolf A; Fleig T; Reiher M; Hess BA
    J Chem Phys; 2005 May; 122(20):204107. PubMed ID: 15945713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relativistic calculation of indirect NMR spin-spin couplings using the Douglas-Kroll-Hess approximation.
    Melo JI; Ruiz de Azúa MC; Peralta JE; Scuseria GE
    J Chem Phys; 2005 Nov; 123(20):204112. PubMed ID: 16351245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic two-component calculations of electronic g-tensors that include spin polarization.
    Malkin I; Malkina OL; Malkin VG; Kaupp M
    J Chem Phys; 2005 Dec; 123(24):244103. PubMed ID: 16396530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory.
    Liu W; Peng D
    J Chem Phys; 2006 Jul; 125(4):44102. PubMed ID: 16942129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poisson-transformed density fitting in relativistic four-component Dirac-Kohn-Sham theory.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Chem Phys; 2008 Mar; 128(12):124108. PubMed ID: 18376909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of electron paramagnetic resonance parameters for paramagnetic molybdenum complexes. 1. Method validation on small and medium-sized systems.
    Fritscher J; Hrobarik P; Kaupp M
    J Phys Chem B; 2007 May; 111(17):4616-29. PubMed ID: 17408258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-component relativistic Kohn-Sham theory.
    Saue T; Helgaker T
    J Comput Chem; 2002 Jun; 23(8):814-23. PubMed ID: 12012358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic all-electron two-component self-consistent density functional calculations including one-electron scalar and spin-orbit effects.
    Peralta JE; Scuseria GE
    J Chem Phys; 2004 Apr; 120(13):5875-81. PubMed ID: 15267469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-Component Relativistic Density Functional Theory Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin-Orbit Effects.
    Gohr S; Hrobárik P; Repiský M; Komorovský S; Ruud K; Kaupp M
    J Phys Chem A; 2015 Dec; 119(51):12892-905. PubMed ID: 26636191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations.
    van Wüllen C; Michauk C
    J Chem Phys; 2005 Nov; 123(20):204113. PubMed ID: 16351246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic sequence of relativistic approximations.
    Dyall KG
    J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence of approximate two-component Hamiltonians: how far is the Dirac limit.
    Kedziera D
    J Chem Phys; 2005 Aug; 123(7):074109. PubMed ID: 16229561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.
    Ilias M; Saue T
    J Chem Phys; 2007 Feb; 126(6):064102. PubMed ID: 17313208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalar relativistic calculations of hyperfine coupling tensors using the Douglas-Kroll-Hess method with a finite-size nucleus model.
    Malkin E; Malkin I; Malkina OL; Malkin VG; Kaupp M
    Phys Chem Chem Phys; 2006 Sep; 8(35):4079-85. PubMed ID: 17028696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of zero-field splitting parameters: comparison of a two-component noncolinear spin-density-functional method and a one-component perturbational approach.
    Reviakine R; Arbuznikov AV; Tremblay JC; Remenyi C; Malkina OL; Malkin VG; Kaupp M
    J Chem Phys; 2006 Aug; 125(5):054110. PubMed ID: 16942206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.