These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16512908)

  • 21. Toward a measure of classification complexity in gene expression signatures.
    Kamath V; Yeatman TJ; Eschrich SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5704-7. PubMed ID: 19164012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database.
    Katz S; Irizarry RA; Lin X; Tripputi M; Porter MW
    BMC Bioinformatics; 2006 Oct; 7():464. PubMed ID: 17059591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilization of two sample t-test statistics from redundant probe sets to evaluate different probe set algorithms in GeneChip studies.
    Hu Z; Willsky GR
    BMC Bioinformatics; 2006 Jan; 7():12. PubMed ID: 16403228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective gene selection method with small sample sets using gradient-based and point injection techniques.
    Huang D; Chow T
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):467-475. PubMed ID: 17666766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some comments on instability of false discovery rate estimation.
    Qiu X; Yakovlev A
    J Bioinform Comput Biol; 2006 Oct; 4(5):1057-68. PubMed ID: 17099941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regularization strategies for hyperplane classifiers: application to cancer classification with gene expression data.
    Andries E; Hagstrom T; Atlas SR; Willman C
    J Bioinform Comput Biol; 2007 Feb; 5(1):79-104. PubMed ID: 17477492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data.
    Yeung KY; Bumgarner RE; Raftery AE
    Bioinformatics; 2005 May; 21(10):2394-402. PubMed ID: 15713736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Empirical study of supervised gene screening.
    Ma S
    BMC Bioinformatics; 2006 Dec; 7():537. PubMed ID: 17176468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosomal patterns of gene expression from microarray data: methodology, validation and clinical relevance in gliomas.
    Turkheimer FE; Roncaroli F; Hennuy B; Herens C; Nguyen M; Martin D; Evrard A; Bours V; Boniver J; Deprez M
    BMC Bioinformatics; 2006 Dec; 7():526. PubMed ID: 17140431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple SVM-RFE for gene selection in cancer classification with expression data.
    Duan KB; Rajapakse JC; Wang H; Azuaje F
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):228-34. PubMed ID: 16220686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large scale data mining approach for gene-specific standardization of microarray gene expression data.
    Yoon S; Yang Y; Choi J; Seong J
    Bioinformatics; 2006 Dec; 22(23):2898-904. PubMed ID: 17032674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constructing the gene regulation-level representation of microarray data for cancer classification.
    Wong HS; Wang HQ
    J Biomed Inform; 2008 Feb; 41(1):95-105. PubMed ID: 17499026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient semi-unsupervised gene selection method via spectral biclustering.
    Liu B; Wan C; Wang L
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):110-4. PubMed ID: 16805107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiclass cancer classification and biomarker discovery using GA-based algorithms.
    Liu JJ; Cutler G; Li W; Pan Z; Peng S; Hoey T; Chen L; Ling XB
    Bioinformatics; 2005 Jun; 21(11):2691-7. PubMed ID: 15814557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimension reduction-based penalized logistic regression for cancer classification using microarray data.
    Shen L; Tan EC
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):166-75. PubMed ID: 17044181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer.
    Villegas-Ruiz V; Moreno J; Jacome-Lopez K; Zentella-Dehesa A; Juarez-Mendez S
    Asian Pac J Cancer Prev; 2016; 17(5):2519-25. PubMed ID: 27268623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Normality of oligonucleotide microarray data and implications for parametric statistical analyses.
    Giles PJ; Kipling D
    Bioinformatics; 2003 Nov; 19(17):2254-62. PubMed ID: 14630654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-category classification using an Extreme Learning Machine for microarray gene expression cancer diagnosis.
    Zhang R; Huang GB; Sundararajan N; Saratchandran P
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):485-495. PubMed ID: 17666768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods for evaluating gene expression from Affymetrix microarray datasets.
    Jiang N; Leach LJ; Hu X; Potokina E; Jia T; Druka A; Waugh R; Kearsey MJ; Luo ZW
    BMC Bioinformatics; 2008 Jun; 9():284. PubMed ID: 18559105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Distribution-Free Convolution Model for background correction of oligonucleotide microarray data.
    Chen Z; McGee M; Liu Q; Kong M; Deng Y; Scheuermann RH
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S19. PubMed ID: 19594878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.