These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16513135)

  • 21. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-protein binding-sites prediction by protein surface structure conservation.
    Konc J; Janezic D
    J Chem Inf Model; 2007; 47(3):940-4. PubMed ID: 17388583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Examination of shape complementarity in docking of unbound proteins.
    Norel R; Petrey D; Wolfson HJ; Nussinov R
    Proteins; 1999 Aug; 36(3):307-17. PubMed ID: 10409824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural clusters of evolutionary trace residues are statistically significant and common in proteins.
    Madabushi S; Yao H; Marsh M; Kristensen DM; Philippi A; Sowa ME; Lichtarge O
    J Mol Biol; 2002 Feb; 316(1):139-54. PubMed ID: 11829509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new test set for validating predictions of protein-ligand interaction.
    Nissink JW; Murray C; Hartshorn M; Verdonk ML; Cole JC; Taylor R
    Proteins; 2002 Dec; 49(4):457-71. PubMed ID: 12402356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locating and characterizing binding sites on proteins.
    Mattos C; Ringe D
    Nat Biotechnol; 1996 May; 14(5):595-9. PubMed ID: 9630949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins.
    Pérez-Cano L; Fernández-Recio J
    Proteins; 2010 Jan; 78(1):25-35. PubMed ID: 19714772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites.
    Kawabata T; Go N
    Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking ligands onto binding site representations derived from proteins built by homology modelling.
    Schafferhans A; Klebe G
    J Mol Biol; 2001 Mar; 307(1):407-27. PubMed ID: 11243828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding response: a descriptor for selecting ligand binding site on protein surfaces.
    Zhong S; MacKerell AD
    J Chem Inf Model; 2007; 47(6):2303-15. PubMed ID: 17900106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.
    Mann G; Hermans J
    J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complementarity of hydrophobic properties in ATP-protein binding: a new criterion to rank docking solutions.
    Pyrkov TV; Kosinsky YA; Arseniev AS; Priestle JP; Jacoby E; Efremov RG
    Proteins; 2007 Feb; 66(2):388-98. PubMed ID: 17094116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Connectivity and binding-site recognition: applications relevant to drug design.
    Illingworth CJ; Scott PD; Parkes KE; Snell CR; Campbell MP; Reynolds CA
    J Comput Chem; 2010 Nov; 31(15):2677-88. PubMed ID: 20839295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges for the prediction of macromolecular interactions.
    Wass MN; David A; Sternberg MJ
    Curr Opin Struct Biol; 2011 Jun; 21(3):382-90. PubMed ID: 21497504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis.
    Wako H; Endo S
    Biophys Chem; 2011 Dec; 159(2-3):257-66. PubMed ID: 21807453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational approach to de novo discovery of fragment binding for novel protein states.
    Konteatis ZD; Klon AE; Zou J; Meshkat S
    Methods Enzymol; 2011; 493():357-80. PubMed ID: 21371598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A scoring function for docking ligands to low-resolution protein structures.
    Bindewald E; Skolnick J
    J Comput Chem; 2005 Mar; 26(4):374-83. PubMed ID: 15651033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated prediction of ligand-binding sites in proteins.
    Harris R; Olson AJ; Goodsell DS
    Proteins; 2008 Mar; 70(4):1506-17. PubMed ID: 17910060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions.
    Deeb O; Rosales-Hernández MC; Gómez-Castro C; Garduño-Juárez R; Correa-Basurto J
    Biopolymers; 2010 Feb; 93(2):161-70. PubMed ID: 19785033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.