BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 16513142)

  • 21. Structural characterization of ultra-stable higher-ordered aggregates generated by novel guanine-rich DNA sequences.
    Biyani M; Nishigaki K
    Gene; 2005 Dec; 364():130-8. PubMed ID: 16146675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of a complex of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin with G-quadruplex DNA.
    Mita H; Ohyama T; Tanaka Y; Yamamoto Y
    Biochemistry; 2006 Jun; 45(22):6765-72. PubMed ID: 16734413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes.
    Borgognone M; Armas P; Calcaterra NB
    Biochem J; 2010 May; 428(3):491-8. PubMed ID: 20394585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biophysical properties of quadruple helices of modified human telomeric DNA.
    Petraccone L; Erra E; Esposito V; Randazzo A; Galeone A; Barone G; Giancola C
    Biopolymers; 2005 Feb; 77(2):75-85. PubMed ID: 15614794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CTG repeats associated with human genetic disease are inherently flexible.
    Chastain PD; Sinden RR
    J Mol Biol; 1998 Jan; 275(3):405-11. PubMed ID: 9466918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural aspects of RecA-dependent homologous strand exchange involving human telomeric DNA.
    Zein SS; Levene SD
    Biochemistry; 2005 Mar; 44(12):4817-28. PubMed ID: 15779908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
    Tolstonog GV; Li G; Shoeman RL; Traub P
    DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation.
    Pearson CE; Eichler EE; Lorenzetti D; Kramer SF; Zoghbi HY; Nelson DL; Sinden RR
    Biochemistry; 1998 Feb; 37(8):2701-8. PubMed ID: 9485421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quadruplex-forming properties of FRAXA (CGG) repeats interrupted by (AGG) triplets.
    Renciuk D; Zemánek M; Kejnovská I; Vorlícková M
    Biochimie; 2009 Mar; 91(3):416-22. PubMed ID: 19028545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Destruction of quadruplex by proteins, and its biological implications in replication and telomere maintenance.
    Enokizono Y; Matsugami A; Uesugi S; Fukuda H; Tsuchiya N; Sugimura T; Nagao M; Nakagama H; Katahira M
    Nucleic Acids Res Suppl; 2003; (3):231-2. PubMed ID: 14510465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of telomerase by G-quartet DNA structures.
    Zahler AM; Williamson JR; Cech TR; Prescott DM
    Nature; 1991 Apr; 350(6320):718-20. PubMed ID: 2023635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of structure and stability of long telomeric DNA G-quadruplexes.
    Yu HQ; Miyoshi D; Sugimoto N
    J Am Chem Soc; 2006 Dec; 128(48):15461-8. PubMed ID: 17132013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene.
    Broxson C; Beckett J; Tornaletti S
    Biochemistry; 2011 May; 50(19):4162-72. PubMed ID: 21469677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary structures in d(CGG) and d(CCG) repeat tracts.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):3-16. PubMed ID: 9451434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A small molecule regulates hairpin structures in d(CGG) trinucleotide repeats.
    Hagihara M; He H; Kimura M; Nakatani K
    Bioorg Med Chem Lett; 2012 Mar; 22(5):2000-3. PubMed ID: 22326165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Duplex dissociation of telomere DNAs induced by molecular crowding.
    Miyoshi D; Matsumura S; Nakano S; Sugimoto N
    J Am Chem Soc; 2004 Jan; 126(1):165-9. PubMed ID: 14709080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ILPR repeats adopt diverse G-quadruplex conformations that determine insulin binding.
    Schonhoft JD; Das A; Achamyeleh F; Samdani S; Sewell A; Mao H; Basu S
    Biopolymers; 2010 Jan; 93(1):21-31. PubMed ID: 19688813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution.
    Xu Y; Noguchi Y; Sugiyama H
    Bioorg Med Chem; 2006 Aug; 14(16):5584-91. PubMed ID: 16682210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study.
    Zheng M; Huang X; Smith GK; Yang X; Gao X
    J Mol Biol; 1996 Nov; 264(2):323-36. PubMed ID: 8951379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.