BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 16513164)

  • 1. Crosslinking of decellularized porcine heart valve matrix by procyanidins.
    Zhai W; Chang J; Lin K; Wang J; Zhao Q; Sun X
    Biomaterials; 2006 Jul; 27(19):3684-90. PubMed ID: 16513164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quercetin-crosslinked porcine heart valve matrix: mechanical properties, stability, anticalcification and cytocompatibility.
    Zhai W; Lü X; Chang J; Zhou Y; Zhang H
    Acta Biomater; 2010 Feb; 6(2):389-95. PubMed ID: 19651252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcification resistance of procyanidin-treated decellularized porcine aortic valves in vivo.
    Liu Y; Liu W; Sun G; Wei X; Yi D
    Heart Surg Forum; 2009 Jan; 12(1):E24-9. PubMed ID: 19233761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation.
    Kasimir MT; Weigel G; Sharma J; Rieder E; Seebacher G; Wolner E; Simon P
    Thromb Haemost; 2005 Sep; 94(3):562-7. PubMed ID: 16268473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Procyanidins-crosslinked heart valve matrix: anticalcification effect.
    Zhai W; Chang J; Lü X; Wang Z
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):913-21. PubMed ID: 19353570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on decellularized porcine aortic valve/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) hybrid heart valve in sheep model.
    Wu S; Liu YL; Cui B; Qu XH; Chen GQ
    Artif Organs; 2007 Sep; 31(9):689-97. PubMed ID: 17725696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Biomed Mater Res A; 2003 Sep; 66(4):755-63. PubMed ID: 12926026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering.
    Grabow N; Schmohl K; Khosravi A; Philipp M; Scharfschwerdt M; Graf B; Stamm C; Haubold A; Schmitz KP; Steinhoff G
    Artif Organs; 2004 Nov; 28(11):971-9. PubMed ID: 15504112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of elastin in pathologic calcification of xenograft heart valves.
    Bailey MT; Pillarisetti S; Xiao H; Vyavahare NR
    J Biomed Mater Res A; 2003 Jul; 66(1):93-102. PubMed ID: 12833435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde.
    Wang X; Ma B; Chang J
    Biomed Mater Eng; 2015; 26(1-2):19-30. PubMed ID: 26484552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root.
    Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Ingham E; Fisher J
    J Heart Valve Dis; 2005 May; 14(3):408-21; discussion 422. PubMed ID: 15974537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomatrix/polymer composite material for heart valve tissue engineering.
    Stamm C; Khosravi A; Grabow N; Schmohl K; Treckmann N; Drechsel A; Nan M; Schmitz KP; Haubold A; Steinhoff G
    Ann Thorac Surg; 2004 Dec; 78(6):2084-92; discussion 2092-3. PubMed ID: 15561041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves.
    Ramamurthi A; Vesely I
    Biomaterials; 2005 Mar; 26(9):999-1010. PubMed ID: 15369688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decellularized and photooxidatively crosslinked bovine jugular veins as potential tissue engineering scaffolds.
    Lü WD; Zhang M; Wu ZS; Hu TH
    Interact Cardiovasc Thorac Surg; 2009 Mar; 8(3):301-5. PubMed ID: 19074454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Cytotoxic Crosslinkers for Heart Valve Tissue Engineering.
    Somers P; Roosens A; De Somer F; Cornelissen M; Van Nooten G
    J Heart Valve Dis; 2015 Jan; 24(1):92-100. PubMed ID: 26182626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of porcine carotid arteries for vascular tissue engineering applications.
    McFetridge PS; Daniel JW; Bodamyali T; Horrocks M; Chaudhuri JB
    J Biomed Mater Res A; 2004 Aug; 70(2):224-34. PubMed ID: 15227667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation.
    O'Brien MF; Goldstein S; Walsh S; Black KS; Elkins R; Clarke D
    Semin Thorac Cardiovasc Surg; 1999 Oct; 11(4 Suppl 1):194-200. PubMed ID: 10660192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.