These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 16513176)
21. Mechanism of dioxygen cleavage in tetrahydrobiopterin-dependent amino acid hydroxylases. Bassan A; Blomberg MR; Siegbahn PE Chemistry; 2003 Jan; 9(1):106-15. PubMed ID: 12506369 [TBL] [Abstract][Full Text] [Related]
22. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. Koehntop KD; Emerson JP; Que L J Biol Inorg Chem; 2005 Mar; 10(2):87-93. PubMed ID: 15739104 [TBL] [Abstract][Full Text] [Related]
23. Oxidative N-dealkylation reactions by oxoiron(IV) complexes of nonheme and heme ligands. Nehru K; Seo MS; Kim J; Nam W Inorg Chem; 2007 Jan; 46(1):293-8. PubMed ID: 17198439 [TBL] [Abstract][Full Text] [Related]
24. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes. de Visser SP Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865 [TBL] [Abstract][Full Text] [Related]
25. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes. Jensen KP; Bell CB; Clay MD; Solomon EI J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382 [TBL] [Abstract][Full Text] [Related]
26. A novel multistep mechanism for oxygen binding to ferrous hemoproteins: rapid kinetic analysis of ferrous-dioxy myeloperoxidase (compound III) formation. Abu-Soud HM; Raushel FM; Hazen SL Biochemistry; 2004 Sep; 43(36):11589-95. PubMed ID: 15350145 [TBL] [Abstract][Full Text] [Related]
27. Structural insights into nonheme alkylperoxoiron(III) and oxoiron(IV) intermediates by X-ray absorption spectroscopy. Rohde JU; Torelli S; Shan X; Lim MH; Klinker EJ; Kaizer J; Chen K; Nam W; Que L J Am Chem Soc; 2004 Dec; 126(51):16750-61. PubMed ID: 15612713 [TBL] [Abstract][Full Text] [Related]
28. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes? de Visser SP J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538 [TBL] [Abstract][Full Text] [Related]
29. Biomimetic hydrocarbon oxidation catalyzed by nonheme iron(III) complexes with peracids: evidence for an Fe(V)=O species. Lee SH; Han JH; Kwak H; Lee SJ; Lee EY; Kim HJ; Lee JH; Bae C; Lee SN; Kim Y; Kim C Chemistry; 2007; 13(33):9393-8. PubMed ID: 17685379 [TBL] [Abstract][Full Text] [Related]
30. Dioxygen activation and catalytic aerobic oxidation by a mononuclear nonheme iron(II) complex. Kim SO; Sastri CV; Seo MS; Kim J; Nam W J Am Chem Soc; 2005 Mar; 127(12):4178-9. PubMed ID: 15783193 [TBL] [Abstract][Full Text] [Related]
31. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)-hydroperoxo species is a sluggish oxidant. Park MJ; Lee J; Suh Y; Kim J; Nam W J Am Chem Soc; 2006 Mar; 128(8):2630-4. PubMed ID: 16492048 [TBL] [Abstract][Full Text] [Related]
32. Dioxygen activation by mononuclear nonheme iron(II) complexes generates iron-oxygen intermediates in the presence of an NADH analogue and proton. Hong S; Lee YM; Shin W; Fukuzumi S; Nam W J Am Chem Soc; 2009 Oct; 131(39):13910-1. PubMed ID: 19746912 [TBL] [Abstract][Full Text] [Related]
33. Theoretical study of dioxygen binding process in iron(III) catechol dioxygenase: "oxygen activation" vs "substrate activation". Nakatani N; Nakao Y; Sato H; Sakaki S J Phys Chem B; 2009 Apr; 113(14):4826-36. PubMed ID: 19284795 [TBL] [Abstract][Full Text] [Related]
34. A combined NRVS and DFT study of Fe(IV)=O model complexes: a diagnostic method for the elucidation of non-heme iron enzyme intermediates. Bell CB; Wong SD; Xiao Y; Klinker EJ; Tenderholt AL; Smith MC; Rohde JU; Que L; Cramer SP; Solomon EI Angew Chem Int Ed Engl; 2008; 47(47):9071-4. PubMed ID: 18925598 [TBL] [Abstract][Full Text] [Related]
35. A density functional study on a biomimetic non-heme iron catalyst: insights into alkane hydroxylation by a formally HO-FeV=O oxidant. Bassan A; Blomberg MR; Siegbahn PE; Que L Chemistry; 2005 Jan; 11(2):692-705. PubMed ID: 15580652 [TBL] [Abstract][Full Text] [Related]
36. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Bruijnincx PC; van Koten G; Klein Gebbink RJ Chem Soc Rev; 2008 Dec; 37(12):2716-44. PubMed ID: 19020684 [TBL] [Abstract][Full Text] [Related]
37. Peroxo and oxo intermediates in mononuclear nonheme iron enzymes and related active sites. Solomon EI; Wong SD; Liu LV; Decker A; Chow MS Curr Opin Chem Biol; 2009 Feb; 13(1):99-113. PubMed ID: 19278895 [TBL] [Abstract][Full Text] [Related]
38. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic? de Visser SP J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391 [TBL] [Abstract][Full Text] [Related]
39. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of aromatic hydroxylation by an activated FeIV=O core in tetrahydrobiopterin-dependent hydroxylases. Bassan A; Blomberg MR; Siegbahn PE Chemistry; 2003 Sep; 9(17):4055-67. PubMed ID: 12953191 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]