These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16513407)

  • 21. A biomechanical comparison of two patterns of screw insertion.
    Lichtblau S; Gallina J; Nasser P; Munyoki M; Jepsen K
    Bull NYU Hosp Jt Dis; 2008; 66(4):269-71. PubMed ID: 19093901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Stress analysis of the femur after osteosynthesis of a trochanteric fracture using the finite element method].
    Takahashi K
    Nihon Seikeigeka Gakkai Zasshi; 1989 Oct; 63(10):1201-11. PubMed ID: 2584829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of muscular contractions on the stress analysis of distal femoral interlocking nailing.
    Shih KS; Tseng CS; Lee CC; Lin SC
    Clin Biomech (Bristol, Avon); 2008 Jan; 23(1):38-44. PubMed ID: 17945402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bridge plate osteosynthesis using dynamic condylar screw (DCS) or retrograde intramedullary supracondylar nail (RIMSN) in the treatment of distal femoral fractures: comparison of two methods in a prospective randomized study.
    Dar GN; Tak SR; Kangoo KA; Halwai MA
    Ulus Travma Acil Cerrahi Derg; 2009 Mar; 15(2):148-53. PubMed ID: 19353317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of lag screw design and lubrication on sliding in trochanteric nails.
    Kummer FJ
    Bull NYU Hosp Jt Dis; 2010; 68(1):29-32. PubMed ID: 20345360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of the fixation stiffness of some femoral stems of different designs.
    Sakai R; Kanai N; Itoman M; Mabuchi K
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):370-8. PubMed ID: 16431001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are locking screws advantageous with plate fixation of humeral shaft fractures? A biomechanical analysis of synthetic and cadaveric bone.
    O'Toole RV; Andersen RC; Vesnovsky O; Alexander M; Topoleski LD; Nascone JW; Sciadini MF; Turen C; Eglseder WA
    J Orthop Trauma; 2008; 22(10):709-15. PubMed ID: 18978547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative biomechanical analysis of implants for the stabilization of proximal humerus fractures.
    Füchtmeier B; May R; Fierlbeck J; Hammer J; Nerlich M
    Technol Health Care; 2006; 14(4-5):261-70. PubMed ID: 17065749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures.
    Perez A; Mahar A; Negus C; Newton P; Impelluso T
    Med Eng Phys; 2008 Jul; 30(6):755-60. PubMed ID: 17905637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intramedullary nails: some design features of the distal end.
    Wang CJ; Brown CJ; Yettram AL; Procter P
    Med Eng Phys; 2003 Nov; 25(9):789-94. PubMed ID: 14519352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical comparison of a 2 and 3 proximal screw-configured antegrade piriformis intramedullary nail with a trochanteric reconstruction nail in an unstable subtrochanteric fracture model.
    Fissel B; Moed BR; Bledsoe JG
    J Orthop Trauma; 2008; 22(5):337-41. PubMed ID: 18448988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element study of trochanteric gamma nail for trochanteric fracture.
    Sitthiseripratip K; Van Oosterwyck H; Vander Sloten J; Mahaisavariya B; Bohez EL; Suwanprateeb J; Van Audekercke R; Oris P
    Med Eng Phys; 2003 Mar; 25(2):99-106. PubMed ID: 12538064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical comparison of expandable and locked intramedullary femoral nails.
    Oliveira ML; Lemon MA; Mears SC; Dinah AF; Waites MD; Knight TA; Belkoff SM
    J Orthop Trauma; 2008 Aug; 22(7):446-50. PubMed ID: 18670283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical characterisation of osteosyntheses for proximal femur fractures: helical blade versus screw.
    Al-Munajjed AA; Hammer J; Mayr E; Nerlich M; Lenich A
    Stud Health Technol Inform; 2008; 133():1-10. PubMed ID: 18376008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Postoperative implant-related complications after treatment of intertrochanteric fracture by gamma nail or by sliding hip screw: a meta-analysis].
    Ding XF; Pei GX; Lin J; Wu TX
    Zhonghua Yi Xue Za Zhi; 2008 Aug; 88(33):2364-8. PubMed ID: 19087702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of physiological loading in total hip replacements.
    Ramos A; Fonseca F; Simões JA
    J Biomech Eng; 2006 Aug; 128(4):579-87. PubMed ID: 16813449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composite resorbable polymer/hydroxylapatite composite screws for fixation of osteochondral osteotomies.
    Lewandrowski KU; Bondre SP; Shea M; Untch CM; Hayes WC; Hile DD; Wise DL; Trantolo DJ
    Biomed Mater Eng; 2002; 12(4):423-38. PubMed ID: 12652036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trochanteric versus piriformis entry portal for the treatment of femoral shaft fractures.
    Ricci WM; Schwappach J; Tucker M; Coupe K; Brandt A; Sanders R; Leighton R
    J Orthop Trauma; 2006; 20(10):663-7. PubMed ID: 17106375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.