These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 16513407)
41. [Mini-invasive fixation of proximal femoral fractures: what benefit for elderly patients?]. Langlais F; Burdin P; Ropars M; Skalli W; Belot N; Lambotte JC Bull Acad Natl Med; 2005 Oct; 189(7):1399-412; discussion 1412-4. PubMed ID: 16669140 [TBL] [Abstract][Full Text] [Related]
42. Low cost polymer intramedullary nails for fracture fixation: a biomechanical study in a porcine femur model. Lewis D; Lutton C; Wilson LJ; Crawford RW; Goss B Arch Orthop Trauma Surg; 2009 Jun; 129(6):817-22. PubMed ID: 19172285 [TBL] [Abstract][Full Text] [Related]
43. Use of locking compression plates for long bone nonunions without removing existing intramedullary nail: review of literature and our experience. Nadkarni B; Srivastav S; Mittal V; Agarwal S J Trauma; 2008 Aug; 65(2):482-6. PubMed ID: 18695487 [TBL] [Abstract][Full Text] [Related]
44. A new intramedullary nailing device for the treatment of femoral shaft fractures: a biomechanical study. Wang G; Pan T; Peng X; Wang J Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):305-12. PubMed ID: 18079030 [TBL] [Abstract][Full Text] [Related]
45. Fit-and-fill analysis of trochanteric gamma nail for the Thai proximal femur: a virtual simulation study. Mahaisavariya B; Sitthiseripratip K; Oris P; Chaichanasiri E; Suwanprateeb J J Med Assoc Thai; 2004 Nov; 87(11):1315-20. PubMed ID: 15825706 [TBL] [Abstract][Full Text] [Related]
46. Biomechanical comparison of three second-generation reconstruction nails in an unstable subtrochanteric femur fracture model. Heiney J; Battula S; Njus G; Ruble C; Vrabec G Proc Inst Mech Eng H; 2008 Aug; 222(6):959-66. PubMed ID: 18935812 [TBL] [Abstract][Full Text] [Related]
47. Comparison of plate-screw systems used in mandibular fracture reduction: finite element analysis. Lovald ST; Khraishi T; Wagner J; Baack B; Kelly J; Wood J J Biomech Eng; 2006 Oct; 128(5):654-62. PubMed ID: 16995751 [TBL] [Abstract][Full Text] [Related]
48. Effect of a thin HA coating on the stress/strain distribution in bone around dental implants using three-dimensional finite element analysis. Aoki H; Ozeki K; Ohtani Y; Fukui Y; Asaoka T Biomed Mater Eng; 2006; 16(3):157-69. PubMed ID: 16518015 [TBL] [Abstract][Full Text] [Related]
49. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
50. Minimally invasive screw plates for surgery of unstable intertrochanteric femoral fractures: a biomechanical comparative study. Ropars M; Mitton D; Skalli W Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):1012-7. PubMed ID: 18579266 [TBL] [Abstract][Full Text] [Related]
51. First clinical and biomechanical results of the Trochanteric Fixation Nail (TFN). Lenich A; Fierlbeck J; Al-Munajjed A; Dendorfer S; Mai R; Füchtmeier B; Mayr E; Hammer J Technol Health Care; 2006; 14(4-5):403-9. PubMed ID: 17065761 [TBL] [Abstract][Full Text] [Related]
52. Efficacy of an aiming device for the placement of distal interlocking screws in trochanteric fixation nailing. Boraiah S; Barker JU; Lorich D Arch Orthop Trauma Surg; 2009 Sep; 129(9):1177-82. PubMed ID: 18677491 [TBL] [Abstract][Full Text] [Related]
54. Fracture strain and stability with additional locking screws in intramedullary nailing: a biomechanical study. Sayana MK; Davis BJ; Kapoor B; Rahmatalla A; Maffulli N J Trauma; 2006 May; 60(5):1053-7. PubMed ID: 16688070 [TBL] [Abstract][Full Text] [Related]
55. Finite element analysis of intramedullary devices: the effect of the gap between the implant and the bone. Simpson DJ; Brown CJ; Yettram AL; Procter P; Andrew GJ Proc Inst Mech Eng H; 2008 Apr; 222(3):333-45. PubMed ID: 18491702 [TBL] [Abstract][Full Text] [Related]
56. Implementation of boundary conditions in modeling the femur is critical for the evaluation of distal intramedullary nailing. Bayoglu R; Okyar AF Med Eng Phys; 2015 Nov; 37(11):1053-60. PubMed ID: 26341599 [TBL] [Abstract][Full Text] [Related]
57. Stress analysis of a partially slotted intramedullary nail. Beaupré GS; Schneider E; Perren SM J Orthop Res; 1984; 2(4):369-76. PubMed ID: 6527162 [TBL] [Abstract][Full Text] [Related]
58. Antegrade versus retrograde titanium elastic nail fixation of pediatric distal-third femoral-shaft fractures: a mechanical study. Mehlman CT; Nemeth NM; Glos DL J Orthop Trauma; 2006 Oct; 20(9):608-12. PubMed ID: 17088662 [TBL] [Abstract][Full Text] [Related]
59. Precise robot-assisted guide positioning for distal locking of intramedullary nails. Yaniv Z; Joskowicz L IEEE Trans Med Imaging; 2005 May; 24(5):624-35. PubMed ID: 15889550 [TBL] [Abstract][Full Text] [Related]
60. Fixation of distal femoral osteotomies with self-reinforced polymer/bioactive glass rods: an experimental study on rabbits. Pyhältö T; Lapinsuo M; Pätiälä H; Pelto M; Törmälä P; Rokkanen P Biomaterials; 2005 Feb; 26(6):645-54. PubMed ID: 15282142 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]