These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16513407)

  • 61. A biomechanical evaluation of the Gamma nail.
    Rosenblum SF; Zuckerman JD; Kummer FJ; Tam BS
    J Bone Joint Surg Br; 1992 May; 74(3):352-7. PubMed ID: 1587875
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cortical screw pullout strength and effective shear stress in synthetic third generation composite femurs.
    Zdero R; Rose S; Schemitsch EH; Papini M
    J Biomech Eng; 2007 Apr; 129(2):289-93. PubMed ID: 17408335
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis.
    Zampelis A; Rangert B; Heijl L
    J Prosthet Dent; 2007 Jun; 97(6 Suppl):S35-43. PubMed ID: 17618932
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evaluation and improvement of the efficiency of the Seidel humeral nail by numerical-experimental analysis of the bone-implant contact.
    Giudice F; La Rosa G; Russo T; Varsalona R
    Med Eng Phys; 2006 Sep; 28(7):682-93. PubMed ID: 16330237
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Encouraging results of treating femoral trochanteric fractures with specially designed double-screw nails.
    Lin J
    J Trauma; 2007 Oct; 63(4):866-74. PubMed ID: 18090019
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Finite element analysis of the cervico-trochanteric stemless femoral prosthesis.
    Tai CL; Shih CH; Chen WP; Lee SS; Liu YL; Hsieh PH; Chen WJ
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S53-8. PubMed ID: 12828915
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Osteosynthesis of hip and femoral shaft fractures using the PFN-long].
    Pavelka T; Houcek P; Linhart M; Matejka J
    Acta Chir Orthop Traumatol Cech; 2007 Apr; 74(2):91-8. PubMed ID: 17493409
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functional outcome in treatment of unstable trochanteric and subtrochanteric fractures with the proximal femoral nail and the Medoff sliding plate.
    Ekström W; Karlsson-Thur C; Larsson S; Ragnarsson B; Alberts KA
    J Orthop Trauma; 2007 Jan; 21(1):18-25. PubMed ID: 17211264
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Micromotion at the fracture site after tibial nailing with four unreamed small-diameter nails--a biomechanical study using a distal tibia fracture model.
    Schüller M; Weninger P; Tschegg E; Jamek M; Redl H; Stanzl-Tschegg S
    J Trauma; 2009 May; 66(5):1391-7. PubMed ID: 19430244
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [The biomechanical study of rotating-arm self-locking intramedullary nails in comminuted femoral shaft fractures].
    Fang Y; Fu X; Chi L; Wang G; Yang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1041-4. PubMed ID: 17121350
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A finite element analysis of the vibrational behaviour of the intra-operatively manufactured prosthesis-femur system.
    Pastrav LC; Devos J; Van der Perre G; Jaecques SV
    Med Eng Phys; 2009 May; 31(4):489-94. PubMed ID: 19136292
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Trigonometric analysis of the mechanical axis deviation induced by telescopic intramedullary femoral lengthening nails.
    Burghardt RD; Herzenberg JE; Burghardt MH
    J Appl Biomech; 2011 Nov; 27(4):385-91. PubMed ID: 21896945
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimum design synthesis of a fractured femur fixation device, using finite element analysis.
    Ghista DN; Elangovan PT
    Biomed Tech (Berl); 1977 Dec; 22(12):312-6. PubMed ID: 597560
    [No Abstract]   [Full Text] [Related]  

  • 75. Controlled plastic deformation for the fastening mechanism of an internal fixation device. The new Mennen 3 PeriPro plate.
    Pappas CA; Young PG; Lee AJ
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):111-20. PubMed ID: 18651277
    [TBL] [Abstract][Full Text] [Related]  

  • 76. ASTM F1717 standard for the preclinical evaluation of posterior spinal fixators: can we improve it?
    La Barbera L; Galbusera F; Villa T; Costa F; Wilke HJ
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1014-26. PubMed ID: 25319550
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Strain gauge analysis of bone response to internal fixation.
    Schatzker J; Sumner-Smith G; Clark R; McBroom R
    Clin Orthop Relat Res; 1978 May; (132):244-51. PubMed ID: 679547
    [No Abstract]   [Full Text] [Related]  

  • 78. Bone remodelling analysis of a bovine femur for a veterinary implant design.
    Rodrigues LB; Lopes DS; Folgado J; Fernandes PR; Pires EB; Las Casas EB; Faleiros RR
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):683-90. PubMed ID: 19358056
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A biomechanical evaluation of orthopaedic implants for hip fractures by finite element analysis and in-vitro tests.
    Eberle S; Gerber C; von Oldenburg G; Högel F; Augat P
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1141-52. PubMed ID: 21138232
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Control of the micromovements of a composite-material nail design: A finite element analysis.
    Ben-Or M; Shavit R; Ben-Tov T; Salai M; Steinberg EL
    J Mech Behav Biomed Mater; 2016 Feb; 54():223-8. PubMed ID: 26476965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.