These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1651352)

  • 21. Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey.
    Seress L; Gulyás AI; Freund TF
    J Comp Neurol; 1991 Nov; 313(1):162-77. PubMed ID: 1761752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postnatal development of thalamic recipient neurons in the monkey striate cortex: III. Somatic inhibitory synapse acquisition by spiny stellate neurons of layer 4C.
    Lund JS; Harper TR
    J Comp Neurol; 1991 Jul; 309(1):141-9. PubMed ID: 1894767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneity of layer II neurons in human entorhinal cortex.
    Beall MJ; Lewis DA
    J Comp Neurol; 1992 Jul; 321(2):241-66. PubMed ID: 1500542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of GABAergic neurons and axon terminals in the macaque striate cortex.
    Fitzpatrick D; Lund JS; Schmechel DE; Towles AC
    J Comp Neurol; 1987 Oct; 264(1):73-91. PubMed ID: 3680625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament.
    Bourne JA; Warner CE; Upton DJ; Rosa MG
    J Comp Neurol; 2007 Feb; 500(5):832-49. PubMed ID: 17177255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus.
    Yan YH; Winarto A; Mansjoer I; Hendrickson A
    J Neurobiol; 1996 Oct; 31(2):189-209. PubMed ID: 8885200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of calbindin-D28k immunoreactivity in the monkey temporal lobe: the amygdaloid complex.
    Pitkänen A; Amaral DG
    J Comp Neurol; 1993 May; 331(2):199-224. PubMed ID: 7685361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey.
    Freund TF; Martin KA; Soltesz I; Somogyi P; Whitteridge D
    J Comp Neurol; 1989 Nov; 289(2):315-36. PubMed ID: 2808770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations.
    Lewis DA; Lund JS
    J Comp Neurol; 1990 Mar; 293(4):599-615. PubMed ID: 2329196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex.
    Dávila JC; Real MA; Olmos L; Legaz I; Medina L; Guirado S
    J Comp Neurol; 2005 Jan; 481(1):42-57. PubMed ID: 15558732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the Otx1 gene in cell differentiation of mammalian cortex.
    Pantò MR; Zappalà A; Tuorto F; Cicirata F
    Eur J Neurosci; 2004 May; 19(10):2893-902. PubMed ID: 15147323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of monocular enucleation on parvalbumin in rat visual system during postnatal development.
    Hada Y; Yamada Y; Imamura K; Mataga N; Watanabe Y; Yamamoto M
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2535-45. PubMed ID: 10509647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex.
    Melchitzky DS; Eggan SM; Lewis DA
    Neuroscience; 2005; 130(1):185-95. PubMed ID: 15561434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental changes in the relationship between type 2 synapses and spiny neurons in the monkey visual cortex.
    Mates SL; Lund JS
    J Comp Neurol; 1983 Nov; 221(1):98-105. PubMed ID: 6643749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Striate cortex in dichromatic and trichromatic marmosets: neurochemical compartmentalization and geniculate input.
    Solomon SG
    J Comp Neurol; 2002 Sep; 450(4):366-81. PubMed ID: 12209849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus.
    Sharma V; Nag TC; Wadhwa S; Roy TS
    J Chem Neuroanat; 2009 Mar; 37(2):78-86. PubMed ID: 19095058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ionotropic glutamate receptor GluR2/3-immunoreactive neurons in the cat, rabbit, and hamster superficial superior colliculus.
    Park WM; Kim MJ; Jeon CJ
    Neurosci Res; 2004 Jun; 49(2):139-55. PubMed ID: 15140557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus.
    Sloviter RS; Sollas AL; Barbaro NM; Laxer KD
    J Comp Neurol; 1991 Jun; 308(3):381-96. PubMed ID: 1865007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuropeptide Y (NPY)-immunoreactive neurons in the primate fascia dentata; occasional coexistence with calcium-binding proteins: a light and electron microscopic study.
    Nitsch R; Leranth C
    J Comp Neurol; 1991 Jul; 309(4):430-44. PubMed ID: 1717521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.