These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 16513553)
1. Quantitative structure-toxicity relationships (QSTRs): a comparative study of various non linear methods. General regression neural network, radial basis function neural network and support vector machine in predicting toxicity of nitro- and cyano- aromatics to Tetrahymena pyriformis. Panaye A; Fan BT; Doucet JP; Yao XJ; Zhang RS; Liu MC; Hu ZD SAR QSAR Environ Res; 2006 Feb; 17(1):75-91. PubMed ID: 16513553 [TBL] [Abstract][Full Text] [Related]
2. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks. Kahn I; Sild S; Maran U J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864 [TBL] [Abstract][Full Text] [Related]
3. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response surface methodology with nonlinear methods. Ren S J Chem Inf Comput Sci; 2003; 43(5):1679-87. PubMed ID: 14502503 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833 [TBL] [Abstract][Full Text] [Related]
5. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools. Roy K; Ghosh G Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717 [TBL] [Abstract][Full Text] [Related]
6. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Xue Y; Li H; Ung CY; Yap CW; Chen YZ Chem Res Toxicol; 2006 Aug; 19(8):1030-9. PubMed ID: 16918241 [TBL] [Abstract][Full Text] [Related]
7. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods. Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574 [TBL] [Abstract][Full Text] [Related]
8. Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis. Devillers J SAR QSAR Environ Res; 2004 Aug; 15(4):237-49. PubMed ID: 15370415 [TBL] [Abstract][Full Text] [Related]
9. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks. Jalali-Heravi M; Kyani A Chemosphere; 2008 Jun; 72(5):733-40. PubMed ID: 18499226 [TBL] [Abstract][Full Text] [Related]
10. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression. Chen HF Chem Biol Drug Des; 2009 Aug; 74(2):142-7. PubMed ID: 19549084 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912 [TBL] [Abstract][Full Text] [Related]
12. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012 [TBL] [Abstract][Full Text] [Related]
13. An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Enoch SJ; Cronin MT; Schultz TW; Madden JC Chemosphere; 2008 Apr; 71(7):1225-32. PubMed ID: 18261763 [TBL] [Abstract][Full Text] [Related]
14. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
15. Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors. Kaiser KL; Niculescu SP; Schultz TW SAR QSAR Environ Res; 2002 Mar; 13(1):57-67. PubMed ID: 12074392 [TBL] [Abstract][Full Text] [Related]
16. Prediction of toxicity using a novel RBF neural network training methodology. Melagraki G; Afantitis A; Makridima K; Sarimveis H; Igglessi-Markopoulou O J Mol Model; 2006 Feb; 12(3):297-305. PubMed ID: 16283121 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches. Singh KP; Gupta S Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095 [TBL] [Abstract][Full Text] [Related]
18. Structure-toxicity analyses of Tetrahymena pyriformis exposed to pyridines -- an examination into extension of surface-response domains. Seward JR; Cronin MT; Schultz TW SAR QSAR Environ Res; 2001 Feb; 11(5-6):489-512. PubMed ID: 11328716 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Cronin MT; Gregory BW; Schultz TW Chem Res Toxicol; 1998 Aug; 11(8):902-8. PubMed ID: 9705752 [TBL] [Abstract][Full Text] [Related]
20. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]