BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16513641)

  • 1. Cholesterol-dependent pore formation of Clostridium difficile toxin A.
    Giesemann T; Jank T; Gerhard R; Maier E; Just I; Benz R; Aktories K
    J Biol Chem; 2006 Apr; 281(16):10808-15. PubMed ID: 16513641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neutralizing antibody that blocks delivery of the enzymatic cargo of
    Kroh HK; Chandrasekaran R; Zhang Z; Rosenthal K; Woods R; Jin X; Nyborg AC; Rainey GJ; Warrener P; Melnyk RA; Spiller BW; Lacy DB
    J Biol Chem; 2018 Jan; 293(3):941-952. PubMed ID: 29180448
    [No Abstract]   [Full Text] [Related]  

  • 3. Low pH-induced formation of ion channels by clostridium difficile toxin B in target cells.
    Barth H; Pfeifer G; Hofmann F; Maier E; Benz R; Aktories K
    J Biol Chem; 2001 Apr; 276(14):10670-6. PubMed ID: 11152463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins.
    Schirmer J; Aktories K
    Biochim Biophys Acta; 2004 Jul; 1673(1-2):66-74. PubMed ID: 15238250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxin B is essential for virulence of Clostridium difficile.
    Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI
    Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT).
    Schwan C; Nölke T; Kruppke AS; Schubert DM; Lang AE; Aktories K
    J Biol Chem; 2011 Aug; 286(33):29356-29365. PubMed ID: 21705797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity of Clostridium difficile toxins A and B requires an active and functional SREBP-2 pathway.
    Papatheodorou P; Song S; López-Ureña D; Witte A; Marques F; Ost GS; Schorch B; Chaves-Olarte E; Aktories K
    FASEB J; 2019 Apr; 33(4):4883-4892. PubMed ID: 30592645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human alpha-defensins inhibit Clostridium difficile toxin B.
    Giesemann T; Guttenberg G; Aktories K
    Gastroenterology; 2008 Jun; 134(7):2049-58. PubMed ID: 18435932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural organization of the functional domains of Clostridium difficile toxins A and B.
    Pruitt RN; Chambers MG; Ng KK; Ohi MD; Lacy DB
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13467-72. PubMed ID: 20624955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb.
    Landenberger M; Nieland J; Roeder M; Nørgaard K; Papatheodorou P; Ernst K; Barth H
    Biochim Biophys Acta Biomembr; 2021 Jun; 1863(6):183603. PubMed ID: 33689753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a structural understanding of Clostridium difficile toxins A and B.
    Pruitt RN; Lacy DB
    Front Cell Infect Microbiol; 2012; 2():28. PubMed ID: 22919620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region.
    Faust C; Ye B; Song KP
    Biochem Biophys Res Commun; 1998 Oct; 251(1):100-5. PubMed ID: 9790914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-κB Activity.
    Koon HW; Wang J; Mussatto CC; Ortiz C; Lee EC; Tran DH; Chen X; Kelly CP; Pothoulakis C
    Antimicrob Agents Chemother; 2018 Jan; 62(1):. PubMed ID: 29038278
    [No Abstract]   [Full Text] [Related]  

  • 16. EhRho1, a RhoA-like GTPase of Entamoeba histolytica, is modified by clostridial glucosylating cytotoxins.
    Majumder S; Schmidt G; Lohia A; Aktories K
    Appl Environ Microbiol; 2006 Dec; 72(12):7842-8. PubMed ID: 17056697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells.
    Blöcker D; Pohlmann K; Haug G; Bachmeyer C; Benz R; Aktories K; Barth H
    J Biol Chem; 2003 Sep; 278(39):37360-7. PubMed ID: 12869543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A.
    Cowardin CA; Jackman BM; Noor Z; Burgess SL; Feig AL; Petri WA
    Infect Immun; 2016 Aug; 84(8):2317-2323. PubMed ID: 27271747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells.
    Nagahama M; Hayashi S; Morimitsu S; Sakurai J
    J Biol Chem; 2003 Sep; 278(38):36934-41. PubMed ID: 12851396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.