BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16513641)

  • 21. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the cell-binding component of the
    Xu X; Godoy-Ruiz R; Adipietro KA; Peralta C; Ben-Hail D; Varney KM; Cook ME; Roth BM; Wilder PT; Cleveland T; Grishaev A; Neu HM; Michel SLJ; Yu W; Beckett D; Rustandi RR; Lancaster C; Loughney JW; Kristopeit A; Christanti S; Olson JW; MacKerell AD; Georges AD; Pozharski E; Weber DJ
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1049-1058. PubMed ID: 31896582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Channel formation by the glycosylphosphatidylinositol-anchored protein binding toxin aerolysin is not promoted by lipid rafts.
    Nelson KL; Buckley JT
    J Biol Chem; 2000 Jun; 275(26):19839-43. PubMed ID: 10770947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts.
    Papatheodorou P; Hornuss D; Nölke T; Hemmasi S; Castonguay J; Picchianti M; Aktories K
    mBio; 2013 Apr; 4(3):e00244-13. PubMed ID: 23631918
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Schweitzer T; Genth H; Pich A
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077344
    [No Abstract]   [Full Text] [Related]  

  • 26. Structural elucidation of the
    Sheedlo MJ; Anderson DM; Thomas AK; Lacy DB
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6139-6144. PubMed ID: 32123082
    [No Abstract]   [Full Text] [Related]  

  • 27. Identification of a novel virulence factor in Clostridium difficile that modulates toxin sensitivity of cultured epithelial cells.
    Miura M; Kato H; Matsushita O
    Infect Immun; 2011 Sep; 79(9):3810-20. PubMed ID: 21746858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa.
    Castagliuolo I; Riegler MF; Valenick L; LaMont JT; Pothoulakis C
    Infect Immun; 1999 Jan; 67(1):302-7. PubMed ID: 9864230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B.
    Dillon ST; Rubin EJ; Yakubovich M; Pothoulakis C; LaMont JT; Feig LA; Gilbert RJ
    Infect Immun; 1995 Apr; 63(4):1421-6. PubMed ID: 7890404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The xenobiotic sensing pregnane X receptor regulates tissue damage and inflammation triggered by C difficile toxins.
    Erickson SL; Alston L; Nieves K; Chang TKH; Mani S; Flannigan KL; Hirota SA
    FASEB J; 2020 Feb; 34(2):2198-2212. PubMed ID: 31907988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing of Clostridium difficile toxins.
    Giesemann T; Egerer M; Jank T; Aktories K
    J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pore-forming activity of clostridial binary toxins.
    Knapp O; Benz R; Popoff MR
    Biochim Biophys Acta; 2016 Mar; 1858(3):512-25. PubMed ID: 26278641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clostridium perfringens epsilon-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes.
    Miyata S; Minami J; Tamai E; Matsushita O; Shimamoto S; Okabe A
    J Biol Chem; 2002 Oct; 277(42):39463-8. PubMed ID: 12177068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters.
    Rolfe RD
    Infect Immun; 1991 Apr; 59(4):1223-30. PubMed ID: 1900806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences.
    Manich M; Knapp O; Gibert M; Maier E; Jolivet-Reynaud C; Geny B; Benz R; Popoff MR
    PLoS One; 2008; 3(11):e3764. PubMed ID: 19018299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.
    Pruitt RN; Chagot B; Cover M; Chazin WJ; Spiller B; Lacy DB
    J Biol Chem; 2009 Aug; 284(33):21934-21940. PubMed ID: 19553670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Medical microbiology: A toxin contest.
    Ballard JD
    Nature; 2010 Oct; 467(7316):665-6. PubMed ID: 20930831
    [No Abstract]   [Full Text] [Related]  

  • 38. Structural characterization of the cell wall binding domains of Clostridium difficile toxins A and B; evidence that Ca2+ plays a role in toxin A cell surface association.
    Demarest SJ; Salbato J; Elia M; Zhong J; Morrow T; Holland T; Kline K; Woodnutt G; Kimmel BE; Hansen G
    J Mol Biol; 2005 Mar; 346(5):1197-206. PubMed ID: 15713474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins.
    Chaves-Olarte E; Löw P; Freer E; Norlin T; Weidmann M; von Eichel-Streiber C; Thelestam M
    J Biol Chem; 1999 Apr; 274(16):11046-52. PubMed ID: 10196187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH-induced conformational changes in Clostridium difficile toxin B.
    Qa'Dan M; Spyres LM; Ballard JD
    Infect Immun; 2000 May; 68(5):2470-4. PubMed ID: 10768933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.