These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1651373)

  • 1. Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ.
    Sewell WF; Starr PA
    J Neurophysiol; 1991 May; 65(5):1158-69. PubMed ID: 1651373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcitonin gene-related peptide suppresses hair cell responses to mechanical stimulation in the Xenopus lateral line organ.
    Bailey GP; Sewell WF
    J Neurosci; 2000 Jul; 20(13):5163-9. PubMed ID: 10864973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic Acetylcholine Receptors and M-Currents Underlie Efferent-Mediated Slow Excitation in Calyx-Bearing Vestibular Afferents.
    Holt JC; Jordan PM; Lysakowski A; Shah A; Barsz K; Contini D
    J Neurosci; 2017 Feb; 37(7):1873-1887. PubMed ID: 28093476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological characterization of the CGRP receptor in the lateral line organ of Xenopus laevis.
    Bailey GP; Sewell WF
    J Assoc Res Otolaryngol; 2000 Aug; 1(1):82-8. PubMed ID: 11548239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of glutamate receptors to spontaneous and stimulus-evoked discharge in afferent fibers innervating hair cells of the Xenopus lateral line organ.
    Bailey GP; Sewell WF
    Hear Res; 2000 Jun; 144(1-2):8-20. PubMed ID: 10831861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation.
    Dawkins R; Keller SL; Sewell WF
    J Neurophysiol; 2005 May; 93(5):2541-51. PubMed ID: 15615825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible neurotransmitter role for CGRP in a hair-cell sensory organ.
    Adams JC; Mroz EA; Sewell WF
    Brain Res; 1987 Sep; 419(1-2):347-51. PubMed ID: 2890408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efferent control of posterior canal afferent receptor discharge in the frog labyrinth.
    Rossi ML; Martini M
    Brain Res; 1991 Jul; 555(1):123-34. PubMed ID: 1933324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic potentials in afferent fibers innervating hair cells of the lateral line organ in Xenopus laevis.
    Sewell WF
    Hear Res; 1990 Feb; 44(1):71-81. PubMed ID: 2324020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid activation of GABAergic interneurons and possible calcium independent GABA release in the mormyrid electrosensory lobe.
    Han VZ; Grant K; Bell CC
    J Neurophysiol; 2000 Mar; 83(3):1592-604. PubMed ID: 10712482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic actions of cholinergic agents upon the hair cell-afferent fiber synapse in the vestibular labyrinth of the frog.
    Bernard C; Cochran SL; Precht W
    Brain Res; 1985 Jul; 338(2):225-36. PubMed ID: 2992685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of central glutamate, acetylcholine and CGRP receptors in gastrointestinal afferent inputs to vagal preganglionic neurones.
    Partosoedarso ER; Blackshaw LA
    Auton Neurosci; 2000 Sep; 83(1-2):37-48. PubMed ID: 11023627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Afferent synaptic transmission in a hair cell organ: pharmacological and physiological analysis of the role of the extended refractory period.
    Dawkins R; Sewell WF
    J Neurophysiol; 2004 Aug; 92(2):1105-15. PubMed ID: 15056680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):303-18. PubMed ID: 2313347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota lota.
    Flock A; Russell IJ
    J Physiol; 1973 Dec; 235(3):591-605. PubMed ID: 4772401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from vestibular nerve afferent fibers in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1996 Nov; 76(5):3087-101. PubMed ID: 8930257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota.
    Flock A; Russell I
    J Physiol; 1976 May; 257(1):45-62. PubMed ID: 948076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of intrinsic afferent pathways in submucosal ganglia of the guinea pig small intestine.
    Pan H; Gershon MD
    J Neurosci; 2000 May; 20(9):3295-309. PubMed ID: 10777793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate-mediated slow synaptic currents in neonatal rat deep dorsal horn neurons in vitro.
    Miller BA; Woolf CJ
    J Neurophysiol; 1996 Sep; 76(3):1465-76. PubMed ID: 8890267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.