BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 16513752)

  • 1. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites.
    Zhou Y; Shi T; Mozola MA; Olson ER; Henthorn K; Brown S; Gussin GN; Friedman DI
    J Bacteriol; 2006 Mar; 188(6):2222-32. PubMed ID: 16513752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo.
    Zhou Y; Mah TF; Yu YT; Mogridge J; Olson ER; Greenblatt J; Friedman DI
    J Mol Biol; 2001 Jun; 310(1):33-49. PubMed ID: 11419935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination.
    Patterson TA; Zhang Z; Baker T; Johnson LL; Friedman DI; Court DL
    J Mol Biol; 1994 Feb; 236(1):217-28. PubMed ID: 8107107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A zinc-binding region in the beta' subunit of RNA polymerase is involved in antitermination of early transcription of phage HK022.
    Clerget M; Jin DJ; Weisberg RA
    J Mol Biol; 1995 May; 248(4):768-80. PubMed ID: 7752239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of functional regions of the Nun transcription termination protein of phage HK022 and the N antitermination protein of phage lambda using hybrid nun-N genes.
    Henthorn KS; Friedman DI
    J Mol Biol; 1996 Mar; 257(1):9-20. PubMed ID: 8632463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of bacteriophage lambdaN-dependent antitermination suggests a possible role for the RNA polymerase alpha subunit in facilitating specific functions of NusA and NusE.
    Szalewska-PaƂasz A; Strzelczyk B; Herman-Antosiewicz A; Wegrzyn G; Thomas MS
    Arch Microbiol; 2003 Sep; 180(3):161-8. PubMed ID: 12845423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation repression by an RNA polymerase elongation complex.
    Wilson HR; Zhou JG; Yu D; Court DL
    Mol Microbiol; 2004 Aug; 53(3):821-8. PubMed ID: 15255895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli RNA polymerase mutations located near the upstream edge of an RNA:DNA hybrid and the beginning of the RNA-exit channel are defective for transcription antitermination by the N protein from lambdoid phage H-19B.
    Cheeran A; Babu Suganthan R; Swapna G; Bandey I; Achary MS; Nagarajaram HA; Sen R
    J Mol Biol; 2005 Sep; 352(1):28-43. PubMed ID: 16061258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitermination of early transcription in phage HK022. Absence of a phage-encoded antitermination factor.
    Oberto J; Clerget M; Ditto M; Cam K; Weisberg RA
    J Mol Biol; 1993 Jan; 229(2):368-81. PubMed ID: 8429552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of RNA polymerase initiation and pausing at the lambda late gene promoter in vivo.
    Kainz M; Roberts JW
    J Mol Biol; 1995 Dec; 254(5):808-14. PubMed ID: 7500352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex.
    Xu J; Koudelka GB
    J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNA-protein complex: direct probing of the interfacial recognition dynamics and its correlation with biological functions.
    Xia T; Becker HC; Wan C; Frankel A; Roberts RW; Zewail AH
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8119-23. PubMed ID: 12815093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli.
    Yang J; Hwang JS; Camakaris H; Irawaty W; Ishihama A; Pittard J
    Mol Microbiol; 2004 Apr; 52(1):243-56. PubMed ID: 15049824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda.
    Chattopadhyay S; Garcia-Mena J; DeVito J; Wolska K; Das A
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):4061-5. PubMed ID: 7732031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of the N-dependent antitermination complex of phage lambda: NusA and RNA bind independently to different unfolded domains of the N protein.
    Van Gilst MR; von Hippel PH
    J Mol Biol; 1997 Nov; 274(2):160-73. PubMed ID: 9398524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects.
    Franklin NC
    J Mol Biol; 1993 May; 231(2):343-60. PubMed ID: 8510151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda.
    Rees WA; Weitzel SE; Das A; von Hippel PH
    J Mol Biol; 1997 Nov; 273(4):797-813. PubMed ID: 9367773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The switch from early to late transcription in phage GA-1: characterization of the regulatory protein p4G.
    Horcajadas JA; Monsalve M; Rojo F; Salas M
    J Mol Biol; 1999 Jul; 290(5):917-28. PubMed ID: 10438592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of P(RM) activity by the lambda PR promoter in both the presence and absence of repressor.
    Fong RS; Woody S; Gussin GN
    J Mol Biol; 1993 Aug; 232(3):792-804. PubMed ID: 8355271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antitermination of transcription by the N-gene protein of bacteriophage lambda: recent progress and remaining problems.
    Greenblatt J
    Ann Microbiol (Paris); 1982; 133(2):225-33. PubMed ID: 6211119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.