BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 16513752)

  • 21. Host factor requirements for processive antitermination of transcription and suppression of pausing by the N protein of bacteriophage lambda.
    Mason SW; Li J; Greenblatt J
    J Biol Chem; 1992 Sep; 267(27):19418-26. PubMed ID: 1388170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product.
    Whalen WA; Das A
    New Biol; 1990 Nov; 2(11):975-91. PubMed ID: 2151659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The antiterminator RNA of phage HK022.
    Banik-Maiti S; King RA; Weisberg RA
    J Mol Biol; 1997 Oct; 272(5):677-87. PubMed ID: 9368650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates.
    Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT
    J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of early transcription termination by Rho026.
    Washburn RS; Jin DJ; Stitt BL
    J Mol Biol; 1996 Jul; 260(3):347-58. PubMed ID: 8757798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal.
    Friedman DI; Olson ER; Johnson LL; Alessi D; Craven MG
    Genes Dev; 1990 Dec; 4(12A):2210-22. PubMed ID: 2148536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the spacial requirements for RNA-protein interactions within the N antitermination complex of bacteriophage lambda.
    Horiya S; Inaba M; Koh CS; Uehara H; Masui N; Ishibashi M; Matsufuji S; Harada K
    Nucleic Acids Symp Ser (Oxf); 2009; (53):91-2. PubMed ID: 19749275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The bacteriophage 434 right operator. Roles of O(R)1, O(R)2 and O(R)3.
    Bushman FD
    J Mol Biol; 1993 Mar; 230(1):28-40. PubMed ID: 8450541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional antitermination.
    Greenblatt J; Nodwell JR; Mason SW
    Nature; 1993 Jul; 364(6436):401-6. PubMed ID: 8332211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase.
    Nodwell JR; Greenblatt J
    Genes Dev; 1991 Nov; 5(11):2141-51. PubMed ID: 1834523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct and indirect effects of mutations in lambda PRM on open complex formation at the divergent PR promoter.
    Fong RS; Woody S; Gussin GN
    J Mol Biol; 1994 Jul; 240(2):119-26. PubMed ID: 8027996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual role of boxB RNA motif in the mechanisms of termination/antitermination at the lambda tR1 terminator revealed in vivo.
    Vieu E; Rahmouni AR
    J Mol Biol; 2004 Jun; 339(5):1077-87. PubMed ID: 15178249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription antitermination: the lambda paradigm updated.
    Friedman DI; Court DL
    Mol Microbiol; 1995 Oct; 18(2):191-200. PubMed ID: 8709839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability of Escherichia coli transcription complexes near an intrinsic terminator.
    Wilson KS; von Hippel PH
    J Mol Biol; 1994 Nov; 244(1):36-51. PubMed ID: 7966320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex.
    King RA; Markov D; Sen R; Severinov K; Weisberg RA
    J Mol Biol; 2004 Sep; 342(4):1143-54. PubMed ID: 15351641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacteriophage lambda N protein alone can induce transcription antitermination in vitro.
    Rees WA; Weitzel SE; Yager TD; Das A; von Hippel PH
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):342-6. PubMed ID: 8552635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a single base-pair deletion in the bacteriophage lambda PRM promoter. Repression of PRM by repressor bound at OR2 and by RNA polymerase bound at PR.
    Woody ST; Fong RS; Gussin GN
    J Mol Biol; 1993 Jan; 229(1):37-51. PubMed ID: 8421315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The antitermination activity of bacteriophage lambda N protein is controlled by the kinetics of an RNA-looping-facilitated interaction with the transcription complex.
    Conant CR; Goodarzi JP; Weitzel SE; von Hippel PH
    J Mol Biol; 2008 Dec; 384(1):87-108. PubMed ID: 18922547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in the 17 bp spacer in the P(R) promoter of bacteriophage lambda affect steps in open complex formation that precede DNA strand separation.
    McKane M; Gussin GN
    J Mol Biol; 2000 Jun; 299(2):337-49. PubMed ID: 10860742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bidirectional transcription in the mom promoter region of bacteriophage Mu.
    Sun W; Hattman S
    J Mol Biol; 1998 Dec; 284(4):885-92. PubMed ID: 9837712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.