These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16513814)

  • 1. The short-term growth response to salt of the developing barley leaf.
    Fricke W; Akhiyarova G; Wei W; Alexandersson E; Miller A; Kjellbom PO; Richardson A; Wojciechowski T; Schreiber L; Veselov D; Kudoyarova G; Volkov V
    J Exp Bot; 2006; 57(5):1079-95. PubMed ID: 16513814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves.
    Fricke W; Akhiyarova G; Veselov D; Kudoyarova G
    J Exp Bot; 2004 May; 55(399):1115-23. PubMed ID: 15047763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues.
    Wei W; Alexandersson E; Golldack D; Miller AJ; Kjellbom PO; Fricke W
    Plant Cell Physiol; 2007 Aug; 48(8):1132-47. PubMed ID: 17602190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity.
    Fricke W
    Planta; 2004 Jul; 219(3):515-25. PubMed ID: 15085434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical limitation of leaf cell elongation in source-reduced barley.
    Fricke W
    Planta; 2002 Jun; 215(2):327-38. PubMed ID: 12029483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [ABA accumulation and distribution during the leaf tissues shows its role stomatal conductance regulation under short-term salinity].
    Akhiiarova GR; Fricke W; Veselov DS; Kudoiarova GR; Veselov SIu
    Tsitologiia; 2006; 48(11):918-23. PubMed ID: 17233477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare.
    Jiang F; Jeschke WD; Hartung W
    J Exp Bot; 2003 Aug; 54(389):1985-93. PubMed ID: 12869524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.).
    Talbi Zribi O; Abdelly C; Debez A
    Plant Biol (Stuttg); 2011 Nov; 13(6):872-80. PubMed ID: 21974779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.
    Martin-Vertedor AI; Dodd IC
    Plant Cell Environ; 2011 Jul; 34(7):1164-75. PubMed ID: 21410712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity.
    Nejad AR; van Meeteren U
    J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA?
    Shatil-Cohen A; Attia Z; Moshelion M
    Plant J; 2011 Jul; 67(1):72-80. PubMed ID: 21401747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?
    Tardieu F; Parent B; Simonneau T
    Plant Cell Environ; 2010 Apr; 33(4):636-47. PubMed ID: 20002334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes.
    Sibole JV; Cabot C; Poschenrieder C; Barceló J
    J Exp Bot; 2003 Sep; 54(390):2111-9. PubMed ID: 12925667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.
    Chenu K; Chapman SC; Hammer GL; McLean G; Salah HB; Tardieu F
    Plant Cell Environ; 2008 Mar; 31(3):378-91. PubMed ID: 18088328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize.
    Voisin AS; Reidy B; Parent B; Rolland G; Redondo E; Gerentes D; Tardieu F; Muller B
    Plant Cell Environ; 2006 Sep; 29(9):1829-40. PubMed ID: 16913872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves.
    Shabala S; Shabala L; Van Volkenburgh E; Newman I
    J Exp Bot; 2005 May; 56(415):1369-78. PubMed ID: 15809285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biophysics of leaf growth in salt-stressed barley. A study at the cell level.
    Fricke W; Peters WS
    Plant Physiol; 2002 May; 129(1):374-88. PubMed ID: 12011367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential responses of maize MIP genes to salt stress and ABA.
    Zhu C; Schraut D; Hartung W; Schäffner AR
    J Exp Bot; 2005 Nov; 56(421):2971-81. PubMed ID: 16216844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance.
    Chen Z; Cuin TA; Zhou M; Twomey A; Naidu BP; Shabala S
    J Exp Bot; 2007; 58(15-16):4245-55. PubMed ID: 18182428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress.
    Walia H; Wilson C; Condamine P; Liu X; Ismail AM; Close TJ
    Plant Cell Environ; 2007 Apr; 30(4):410-21. PubMed ID: 17324228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.