These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16514363)

  • 1. A positron emission tomography study during auditory localization by late-onset blind individuals.
    Voss P; Gougoux F; Lassonde M; Zatorre RJ; Lepore F
    Neuroreport; 2006 Mar; 17(4):383-8. PubMed ID: 16514363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study.
    Collignon O; Davare M; Olivier E; De Volder AG
    Brain Topogr; 2009 May; 21(3-4):232-40. PubMed ID: 19199020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals.
    Gougoux F; Zatorre RJ; Lassonde M; Voss P; Lepore F
    PLoS Biol; 2005 Feb; 3(2):e27. PubMed ID: 15678166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects.
    Collignon O; Voss P; Lassonde M; Lepore F
    Exp Brain Res; 2009 Jan; 192(3):343-58. PubMed ID: 18762928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in occipital cortex activity in early blind humans using a sensory substitution device.
    De Volder AG; Catalan-Ahumada M; Robert A; Bol A; Labar D; Coppens A; Michel C; Veraart C
    Brain Res; 1999 Apr; 826(1):128-34. PubMed ID: 10216204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task.
    Voss P; Gougoux F; Zatorre RJ; Lassonde M; Lepore F
    Neuroimage; 2008 Apr; 40(2):746-758. PubMed ID: 18234523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early but not late-blindness leads to enhanced auditory perception.
    Wan CY; Wood AG; Reutens DC; Wilson SJ
    Neuropsychologia; 2010 Jan; 48(1):344-8. PubMed ID: 19703481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain functional reorganization in early blind humans revealed by auditory event-related potentials.
    Leclerc C; Saint-Amour D; Lavoie ME; Lassonde M; Lepore F
    Neuroreport; 2000 Feb; 11(3):545-50. PubMed ID: 10718312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occipital activation by pattern recognition in the early blind using auditory substitution for vision.
    Arno P; De Volder AG; Vanlierde A; Wanet-Defalque MC; Streel E; Robert A; Sanabria-Bohórquez S; Veraart C
    Neuroimage; 2001 Apr; 13(4):632-45. PubMed ID: 11305892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional connectivity between somatosensory and visual cortex in early blind humans.
    Wittenberg GF; Werhahn KJ; Wassermann EM; Herscovitch P; Cohen LG
    Eur J Neurosci; 2004 Oct; 20(7):1923-7. PubMed ID: 15380014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reorganization of Sound Location Processing in the Auditory Cortex of Blind Humans.
    van der Heijden K; Formisano E; Valente G; Zhan M; Kupers R; de Gelder B
    Cereb Cortex; 2020 Mar; 30(3):1103-1116. PubMed ID: 31504283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of vision on the development of topographical orientation abilities.
    Fortin M; Voss P; Rainville C; Lassonde M; Lepore F
    Neuroreport; 2006 Mar; 17(4):443-6. PubMed ID: 16514373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossmodal audio-visual interactions in the primary visual cortex of the visually deprived cat: a physiological and anatomical study.
    Sanchez-Vives MV; Nowak LG; Descalzo VF; Garcia-Velasco JV; Gallego R; Berbel P
    Prog Brain Res; 2006; 155():287-311. PubMed ID: 17027395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects.
    Collignon O; Lassonde M; Lepore F; Bastien D; Veraart C
    Cereb Cortex; 2007 Feb; 17(2):457-65. PubMed ID: 16581983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Motion Area MT+/V5 Responds to Auditory Motion in Human Sight-Recovery Subjects.
    Saenz M; Lewis LB; Huth AG; Fine I; Koch C
    J Neurosci; 2008 May; 28(20):5141-8. PubMed ID: 18480270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of cross-modal plasticity of effective connectivity in the blind by dynamic causal modeling of functional MRI data.
    Fujii T; Tanabe HC; Kochiyama T; Sadato N
    Neurosci Res; 2009 Oct; 65(2):175-86. PubMed ID: 19580827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blind subjects process auditory spectral cues more efficiently than sighted individuals.
    Doucet ME; Guillemot JP; Lassonde M; Gagné JP; Leclerc C; Lepore F
    Exp Brain Res; 2005 Jan; 160(2):194-202. PubMed ID: 15309355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early- and late-onset blind individuals show supra-normal auditory abilities in far-space.
    Voss P; Lassonde M; Gougoux F; Fortin M; Guillemot JP; Lepore F
    Curr Biol; 2004 Oct; 14(19):1734-8. PubMed ID: 15458644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual cortex activation in bilingual blind individuals during use of native and second language.
    Ofan RH; Zohary E
    Cereb Cortex; 2007 Jun; 17(6):1249-59. PubMed ID: 16861335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG coherence in early-blind humans during sound localization.
    Leclerc C; Segalowitz SJ; Desjardins J; Lassonde M; Lepore F
    Neurosci Lett; 2005 Mar; 376(3):154-9. PubMed ID: 15721213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.