BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16514604)

  • 1. Biodegradability and thermal stability of poly(propylene carbonate)/starch composites.
    Lu XL; Du FG; Ge XC; Xiao M; Meng YZ
    J Biomed Mater Res A; 2006 Jun; 77(4):653-8. PubMed ID: 16514604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid).
    Manavitehrani I; Fathi A; Wang Y; Maitz PK; Dehghani F
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22421-30. PubMed ID: 26376751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer.
    Singh RP; Pandey JK; Rutot D; Degée P; Dubois P
    Carbohydr Res; 2003 Aug; 338(17):1759-69. PubMed ID: 12892943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a Biodegradable Implant with Tunable Characteristics for Bone Implant Applications.
    Manavitehrani I; Fathi A; Wang Y; Maitz PK; Mirmohseni F; Cheng TL; Peacock L; Little DG; Schindeler A; Dehghani F
    Biomacromolecules; 2017 Jun; 18(6):1736-1746. PubMed ID: 28535038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Fourier transform infrared spectroscopic study of the thermal degradation of isotactic poly(propylene).
    He P; Xiao Y; Zhang P; Zhu N; Zhu X; Yan D
    Appl Spectrosc; 2005 Jan; 59(1):33-8. PubMed ID: 15720736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dioxide-based copolymers: environmental benefits of PPC, an industrially viable catalyst.
    Qin Y; Wang X
    Biotechnol J; 2010 Nov; 5(11):1164-80. PubMed ID: 21058318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites.
    Lv S; Zhang Y; Gu J; Tan H
    Int J Biol Macromol; 2018 Jul; 113():338-344. PubMed ID: 29481951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable thermoplastic composites based on polyvinyl alcohol and algae.
    Chiellini E; Cinelli P; Ilieva VI; Martera M
    Biomacromolecules; 2008 Mar; 9(3):1007-13. PubMed ID: 18257530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of thermoplastic starch/eggshell powder composites.
    Bootklad M; Kaewtatip K
    Carbohydr Polym; 2013 Sep; 97(2):315-20. PubMed ID: 23911451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites.
    Jumaidin R; Sapuan SM; Jawaid M; Ishak MR; Sahari J
    Int J Biol Macromol; 2017 Jun; 99():265-273. PubMed ID: 28249765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks.
    Timmer MD; Ambrose CG; Mikos AG
    J Biomed Mater Res A; 2003 Sep; 66(4):811-8. PubMed ID: 12926033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and properties of biodegradable polymeric blends from poly(propylene carbonate) and poly(ethylene-co-vinyl alcohol).
    Wang XL; Du FG; Jiao J; Meng YZ; Li RK
    J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):373-9. PubMed ID: 17415767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro degradation of biodegradable blending materials based on poly(p-dioxanone) and poly(vinyl alcohol)-graft-poly(p-dioxanone) with high molecular weights.
    Chen SC; Wang XL; Wang YZ; Yang KK; Zhou ZX; Wu G
    J Biomed Mater Res A; 2007 Feb; 80(2):453-65. PubMed ID: 17013860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression molding and tensile properties of thermoplastic potato starch materials.
    Thunwall M; Boldizar A; Rigdahl M
    Biomacromolecules; 2006 Mar; 7(3):981-6. PubMed ID: 16529440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites.
    Rosa MF; Chiou BS; Medeiros ES; Wood DF; Williams TG; Mattoso LH; Orts WJ; Imam SH
    Bioresour Technol; 2009 Nov; 100(21):5196-202. PubMed ID: 19560341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation behavior and modelling of soil burial effect on degradation rate of PLA blended with starch and wood flour.
    Lv S; Zhang Y; Gu J; Tan H
    Colloids Surf B Biointerfaces; 2017 Nov; 159():800-808. PubMed ID: 28886516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of biodegradability of poly(ethylene carbonate) and poly(propylene carbonate) in the peritoneal cavity in rats.
    Kawaguchi T; Nakano M; Juni K; Inoue S; Yoshida Y
    Chem Pharm Bull (Tokyo); 1983 Apr; 31(4):1400-3. PubMed ID: 6627516
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends.
    Xing C; Wang H; Hu Q; Xu F; Cao X; You J; Li Y
    Carbohydr Polym; 2013 Feb; 92(2):1921-7. PubMed ID: 23399238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.