These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 16514675)
1. Lasers-an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Bertling K; Hurse TJ; Kappler U; Rakić AD Biotechnol Bioeng; 2006 Jun; 94(2):337-45. PubMed ID: 16514675 [TBL] [Abstract][Full Text] [Related]
2. Effect of light and oxygen and adaptation to changing light conditions in a photosynthetic mutant in which the LHII complex of Rhv. sulfidophilum was heterologously expressed in a strain of Rb. capsulatus whose puc operon was deleted. Barbieri Md Mdel R; Kerber NL; Pucheu NL; Tadros MH; García AF Curr Microbiol; 2002 Sep; 45(3):209-16. PubMed ID: 12177744 [TBL] [Abstract][Full Text] [Related]
3. Effects of light intensity distribution on growth of Rhodobacter capsulatus. Katsuda T; Yegani R; Fujii N; Igarashi K; Yoshimura S; Katoh S Biotechnol Prog; 2004; 20(3):998-1000. PubMed ID: 15176912 [TBL] [Abstract][Full Text] [Related]
4. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production. Aklujkar M; Prince RC; Beatty JT Arch Biochem Biophys; 2005 May; 437(2):186-98. PubMed ID: 15850558 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence spectroscopy of single photosynthetic light-harvesting supramolecular systems. Saga Y; Tamiaki H Cell Biochem Biophys; 2004; 40(2):149-65. PubMed ID: 15054220 [TBL] [Abstract][Full Text] [Related]
6. The photosynthetic deficiency due to puhC gene deletion in Rhodobacter capsulatus suggests a PuhC protein-dependent process of RC/LH1/PufX complex reorganization. Aklujkar M; Prince RC; Beatty JT Arch Biochem Biophys; 2006 Oct; 454(1):59-71. PubMed ID: 16949540 [TBL] [Abstract][Full Text] [Related]
7. The PufX protein of Rhodobacter capsulatus affects the properties of bacteriochlorophyll a and carotenoid pigments of light-harvesting complex 1. Aklujkar M; Beatty JT Arch Biochem Biophys; 2005 Nov; 443(1-2):21-32. PubMed ID: 16212932 [TBL] [Abstract][Full Text] [Related]
8. Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation. Ma C; Wang X; Guo L; Wu X; Yang H Bioresour Technol; 2012 Aug; 118():490-5. PubMed ID: 22717568 [TBL] [Abstract][Full Text] [Related]
10. The orf162b sequence of Rhodobacter capsulatus encodes a protein required for optimal levels of photosynthetic pigment-protein complexes. Aklujkar M; Harmer AL; Prince RC; Beatty JT J Bacteriol; 2000 Oct; 182(19):5440-7. PubMed ID: 10986247 [TBL] [Abstract][Full Text] [Related]
11. [Distribution of bacteriochlorophyll between the pigment-protein complexes of the sulfur photosynthesizing bacterium Allochromatium minutissimum depending on light intensity at different temperatures]. Solov'ev AA; Erokhin IuE Mikrobiologiia; 2008; 77(5):603-10. PubMed ID: 19004340 [TBL] [Abstract][Full Text] [Related]
12. [Effect of growth conditions on electrophysical properties of Rhodobacter capsulatus PG cells]. Zubova SV; Ivanov AIu; Prokhorenko IP Mikrobiologiia; 2008; 77(5):639-43. PubMed ID: 19004345 [TBL] [Abstract][Full Text] [Related]
13. Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Hoekema S; Douma RD; Janssen M; Tramper J; Wijffels RH Biotechnol Bioeng; 2006 Nov; 95(4):613-26. PubMed ID: 16958141 [TBL] [Abstract][Full Text] [Related]
14. Electrochromic responses of carotenoid absorbance bands in purified light-harvesting complexes from Rhodobacter capsulatus reconstituted into liposomes. Goodwin MG; Jackson JB Biochim Biophys Acta; 1993 Sep; 1144(2):191-8. PubMed ID: 8369337 [TBL] [Abstract][Full Text] [Related]
15. Low-temperature studies of electron transfer to the M side of YFH reaction centers from Rhodobacter capsulatus. Kirmaier C; Holten D J Phys Chem B; 2009 Jan; 113(4):1132-42. PubMed ID: 19132840 [TBL] [Abstract][Full Text] [Related]
16. Electrochromic responses of bacteriochlorophyll absorbance bands in purified light-harvesting complexes of Rhodobacter capsulatus reconstituted into liposomes. Jackson JB; Goodwin MG Biochim Biophys Acta; 1993 Sep; 1144(2):199-203. PubMed ID: 8369338 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of light-harvesting complex I alpha and beta polypeptides into the intracytoplasmic membrane of Rhodobacter capsulatus. Richter P; Drews G J Bacteriol; 1991 Sep; 173(17):5336-45. PubMed ID: 1885514 [TBL] [Abstract][Full Text] [Related]
18. Atomic force microscopy studies of native photosynthetic membranes. Sturgis JN; Tucker JD; Olsen JD; Hunter CN; Niederman RA Biochemistry; 2009 May; 48(17):3679-98. PubMed ID: 19265434 [TBL] [Abstract][Full Text] [Related]
19. Primary alcohols and di-alcohols as growth substrates for the purple nonsulfur bacterium Rhodobacter capsulatus. Pantazopoulous PE; Madigan MT Can J Microbiol; 2000 Dec; 46(12):1166-70. PubMed ID: 11142409 [TBL] [Abstract][Full Text] [Related]
20. [Synthesis of bacteriochlorophyll a by the purple nonsulfur bacterium Rhodobacter capsulatus]. Patrusheva EV; Fedorov AS; Belera VV; Minkevich IG; Tsygankov AA Prikl Biokhim Mikrobiol; 2007; 43(2):208-14. PubMed ID: 17476808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]