These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16515452)

  • 21. Dark Field Microscopic Sensitive Detection of Amyloid Fibrils Using Gold Nanoparticles Modified with Antibody.
    Bu T; Zako T; Maeda M
    Anal Sci; 2016; 32(3):307-11. PubMed ID: 26960610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticle detection technology for chemical analysis.
    Koropchak JA; Sadain S; Yang X; Magnusson LE; Heybroek M; Anisimov M; Kaufman SL
    Anal Chem; 1999 Jun; 71(11):386A-394A. PubMed ID: 10366886
    [No Abstract]   [Full Text] [Related]  

  • 23. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril.
    Schmidt A; Annamalai K; Schmidt M; Grigorieff N; Fändrich M
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6200-5. PubMed ID: 27185936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications.
    Yguerabide J; Yguerabide EE
    Anal Biochem; 1998 Sep; 262(2):137-56. PubMed ID: 9750128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of aggregation of synthetic beta-amyloid peptide.
    Tomski SJ; Murphy RM
    Arch Biochem Biophys; 1992 May; 294(2):630-8. PubMed ID: 1567217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A setup for simultaneous measurement of infrared spectra and light scattering signals: watching amyloid fibrils grow from intact proteins.
    Li Y; Maurer J; Roth A; Vogel V; Winter E; Mäntele W
    Rev Sci Instrum; 2014 Aug; 85(8):084302. PubMed ID: 25173287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermediates caught in the act: tracing insulin amyloid fibril formation in time by combined optical spectroscopy, light scattering, mass spectrometry and microscopy.
    Gladytz A; Lugovoy E; Charvat A; Häupl T; Siefermann KR; Abel B
    Phys Chem Chem Phys; 2015 Jan; 17(2):918-27. PubMed ID: 25408431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state.
    Pallitto MM; Murphy RM
    Biophys J; 2001 Sep; 81(3):1805-22. PubMed ID: 11509390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quasi-elastic light scattering from large anisotropic particles: application to the red blood cells.
    Bordi F; Cametti C; Di Biasio A; Angeletti M; Sparapani L
    Bioelectrochemistry; 2000 Dec; 52(2):213-21. PubMed ID: 11129245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro oligomerization and fibrillogenesis of amyloid-beta peptides.
    Benseny-Cases N; Klementieva O; Cladera J
    Subcell Biochem; 2012; 65():53-74. PubMed ID: 23224999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment of mobile phase particulate matter in low-angle quasi-elastic light scattering.
    Stelzer KJ; Hastings DF; Gordon MA
    Anal Biochem; 1984 Jan; 136(1):251-7. PubMed ID: 6711812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studying the effects of chaperones on amyloid fibril formation.
    Zhang H; Xu LQ; Perrett S
    Methods; 2011 Mar; 53(3):285-94. PubMed ID: 21144901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.
    Contado C; Argazzi R; Amendola V
    J Chromatogr A; 2016 Nov; 1471():178-185. PubMed ID: 27756476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous acquisition of infrared, fluorescence and light scattering spectra of proteins: direct evidence for pre-fibrillar species in amyloid fibril formation.
    Baldassarre M; Bennett M; Barth A
    Analyst; 2016 Feb; 141(3):963-73. PubMed ID: 26668843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large size fibrillar bundles of the Alzheimer amyloid beta-protein.
    Carrotta R; Barthès J; Longo A; Martorana V; Manno M; Portale G; San Biagio PL
    Eur Biophys J; 2007 Sep; 36(7):701-9. PubMed ID: 17492436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications.
    Yguerabide J; Yguerabide EE
    Anal Biochem; 1998 Sep; 262(2):157-76. PubMed ID: 9750129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational change of core particles studied by quasielastic light scattering.
    Hantz E; Cao A; Taillandier E; Tivant P; Drifford M; Defer N; Kruh J
    Biochimie; 1981; 63(11-12):891-4. PubMed ID: 7332757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance.
    Quevedo IR; Tufenkji N
    Environ Sci Technol; 2009 May; 43(9):3176-82. PubMed ID: 19534131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of environmental conditions on aggregation and fibril formation of barstar.
    Gast K; Modler AJ; Damaschun H; Kröber R; Lutsch G; Zirwer D; Golbik R; Damaschun G
    Eur Biophys J; 2003 Dec; 32(8):710-23. PubMed ID: 12898068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a standard method for nanoparticle sizing by using the angular dependence of dynamic light scattering.
    Takahashi K; Kato H; Kinugasa S
    Anal Sci; 2011; 27(7):751. PubMed ID: 21747185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.