These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16515475)

  • 1. Peroxisome proliferator-activated receptors and the control of fatty acid oxidation in cardiac hypertrophy.
    Planavila A; Calvo RR; Vázquez-Carrera M
    Mini Rev Med Chem; 2006 Mar; 6(3):357-63. PubMed ID: 16515475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation.
    Planavila A; Laguna JC; Vázquez-Carrera M
    Biochim Biophys Acta; 2005 Feb; 1687(1-3):76-83. PubMed ID: 15708355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear factor-kappaB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy.
    Planavila A; Laguna JC; Vázquez-Carrera M
    J Biol Chem; 2005 Apr; 280(17):17464-71. PubMed ID: 15728586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear receptor signaling and cardiac energetics.
    Huss JM; Kelly DP
    Circ Res; 2004 Sep; 95(6):568-78. PubMed ID: 15375023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic impairment in response to early induction of C/EBPβ leads to compromised cardiac function during pathological hypertrophy.
    Banerjee D; Datta Chaudhuri R; Niyogi S; Roy Chowdhuri S; Poddar Sarkar M; Chatterjee R; Chakrabarti P; Sarkar S
    J Mol Cell Cardiol; 2020 Feb; 139():148-163. PubMed ID: 31958467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPAR signaling in the control of cardiac energy metabolism.
    Barger PM; Kelly DP
    Trends Cardiovasc Med; 2000 Aug; 10(6):238-45. PubMed ID: 11282301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism.
    Latruffe N; Vamecq J
    Biochimie; 1997; 79(2-3):81-94. PubMed ID: 9209701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The PPAR regulatory system in cardiac physiology and disease.
    Finck BN
    Cardiovasc Res; 2007 Jan; 73(2):269-77. PubMed ID: 17010956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1.
    Singh KK; Shukla PC; Yanagawa B; Quan A; Lovren F; Pan Y; Wagg CS; Teoh H; Lopaschuk GD; Verma S
    J Thorac Cardiovasc Surg; 2013 Sep; 146(3):702-9. PubMed ID: 23317938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation.
    Planavila A; Iglesias R; Giralt M; Villarroya F
    Cardiovasc Res; 2011 May; 90(2):276-84. PubMed ID: 21115502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid metabolism assessed by 125I-iodophenyl 9-methylpentadecanoic acid (9MPA) and expression of fatty acid utilization enzymes in volume-overloaded hearts.
    Miyamoto T; Takeishi Y; Tazawa S; Inoue M; Aoyama T; Takahashi H; Arimoto T; Shishido T; Tomoike H; Kubota I
    Eur J Clin Invest; 2004 Mar; 34(3):176-81. PubMed ID: 15025675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of energy substrate metabolism in normal and hypertrophied heart.
    Tian R
    Curr Hypertens Rep; 2003 Dec; 5(6):454-8. PubMed ID: 14594563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing fatty acid oxidation negatively regulates PPARs signaling in the heart.
    Liu Z; Ding J; McMillen TS; Villet O; Tian R; Shao D
    J Mol Cell Cardiol; 2020 Sep; 146():1-11. PubMed ID: 32592696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of PPARs in Pathological Cardiac Hypertrophy and Heart Failure.
    Liao HH; Jia XH; Liu HJ; Yang Z; Tang QZ
    Curr Pharm Des; 2017; 23(11):1677-1686. PubMed ID: 27779079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivation of fatty acid oxidation by medium chain fatty acid prevents myocyte hypertrophy in H9c2 cell line.
    Ismael S; Nair RR
    Mol Cell Biochem; 2021 Jan; 476(1):483-491. PubMed ID: 33000353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease.
    Finck BN; Kelly DP
    Circulation; 2007 May; 115(19):2540-8. PubMed ID: 17502589
    [No Abstract]   [Full Text] [Related]  

  • 18. Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart.
    Finck BN; Kelly DP
    J Mol Cell Cardiol; 2002 Oct; 34(10):1249-57. PubMed ID: 12425323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TNF-alpha reduces PGC-1alpha expression through NF-kappaB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model.
    Palomer X; Alvarez-Guardia D; Rodríguez-Calvo R; Coll T; Laguna JC; Davidson MM; Chan TO; Feldman AM; Vázquez-Carrera M
    Cardiovasc Res; 2009 Mar; 81(4):703-12. PubMed ID: 19038972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.
    Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.