These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 16515826)
1. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
3. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
4. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
6. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
7. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Liu X; Peng K; Wang A; Lian C; Shen Z Chemosphere; 2010 Feb; 78(9):1136-41. PubMed ID: 20060149 [TBL] [Abstract][Full Text] [Related]
8. Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus. Romih N; Grabner B; Lakota M; Ribaric-Lasnik C Int J Phytoremediation; 2012 Mar; 14(3):282-301. PubMed ID: 22567712 [TBL] [Abstract][Full Text] [Related]
9. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils. Senthilkumar P; Prince WS; Sivakumar S; Subbhuraam CV Chemosphere; 2005 Sep; 60(10):1493-6. PubMed ID: 16054919 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Zhu Y; Yu H; Wang J; Fang W; Yuan J; Yang Z J Agric Food Chem; 2007 Feb; 55(3):1045-52. PubMed ID: 17263511 [TBL] [Abstract][Full Text] [Related]
11. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays. Selvam A; Wong JW J Hazard Mater; 2009 Aug; 167(1-3):170-8. PubMed ID: 19185420 [TBL] [Abstract][Full Text] [Related]
12. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case. Wang FY; Lin XG; Yin R Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687 [TBL] [Abstract][Full Text] [Related]
13. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Bidar G; Garçon G; Pruvot C; Dewaele D; Cazier F; Douay F; Shirali P Environ Pollut; 2007 Jun; 147(3):546-53. PubMed ID: 17141383 [TBL] [Abstract][Full Text] [Related]
14. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Murakami M; Ae N; Ishikawa S Environ Pollut; 2007 Jan; 145(1):96-103. PubMed ID: 16781805 [TBL] [Abstract][Full Text] [Related]
15. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Liu W; Zhou Q; An J; Sun Y; Liu R J Hazard Mater; 2010 Jan; 173(1-3):737-43. PubMed ID: 19775811 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
17. 'Alperujo' compost amendment of contaminated calcareous and acidic soils: effects on growth and trace element uptake by five Brassica species. Fornes F; García-de-la-Fuente R; Belda RM; Abad M Bioresour Technol; 2009 Sep; 100(17):3982-90. PubMed ID: 19369067 [TBL] [Abstract][Full Text] [Related]
18. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Friesl W; Friedl J; Platzer K; Horak O; Gerzabek MH Environ Pollut; 2006 Nov; 144(1):40-50. PubMed ID: 16515824 [TBL] [Abstract][Full Text] [Related]
19. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils. Vázquez S; Carpena RO; Bernal MP Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992 [TBL] [Abstract][Full Text] [Related]
20. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Vogel-Mikus K; Drobne D; Regvar M Environ Pollut; 2005 Jan; 133(2):233-42. PubMed ID: 15519454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]