BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16516209)

  • 1. Mutational analysis of the oxidoreductase ERp57 reveals the importance of the two central residues in the redox motif.
    Beynon-Jones SM; Antoniou AN; Powis SJ
    FEBS Lett; 2006 Mar; 580(7):1897-902. PubMed ID: 16516209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-binding activity of the ERp57 C-terminal domain is related to a redox-dependent conformational change.
    Grillo C; D'Ambrosio C; Consalvi V; Chiaraluce R; Scaloni A; Maceroni M; Eufemi M; Altieri F
    J Biol Chem; 2007 Apr; 282(14):10299-310. PubMed ID: 17283067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation.
    Hirano N; Shibasaki F; Sakai R; Tanaka T; Nishida J; Yazaki Y; Takenawa T; Hirai H
    Eur J Biochem; 1995 Nov; 234(1):336-42. PubMed ID: 8529662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules.
    Antoniou AN; Ford S; Alphey M; Osborne A; Elliott T; Powis SJ
    EMBO J; 2002 Jun; 21(11):2655-63. PubMed ID: 12032078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin.
    Martin V; Groenendyk J; Steiner SS; Guo L; Dabrowska M; Parker JM; Müller-Esterl W; Opas M; Michalak M
    J Biol Chem; 2006 Jan; 281(4):2338-46. PubMed ID: 16291754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERp57 is a multifunctional thiol-disulfide oxidoreductase.
    Frickel EM; Frei P; Bouvier M; Stafford WF; Helenius A; Glockshuber R; Ellgaard L
    J Biol Chem; 2004 Apr; 279(18):18277-87. PubMed ID: 14871896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the bb' domains of the protein disulfide isomerase ERp57.
    Kozlov G; Maattanen P; Schrag JD; Pollock S; Cygler M; Nagar B; Thomas DY; Gehring K
    Structure; 2006 Aug; 14(8):1331-9. PubMed ID: 16905107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DNA-binding activity of protein disulfide isomerase ERp57 is associated with the a(') domain.
    Grillo C; Coppari S; Turano C; Altieri F
    Biochem Biophys Res Commun; 2002 Jul; 295(1):67-73. PubMed ID: 12083768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the ERp57-Tapasin complex by rapid cellular acidification and thiol modification.
    Antoniou AN; Powis SJ
    Antioxid Redox Signal; 2003 Aug; 5(4):375-9. PubMed ID: 13678524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of ERp57 with mouse MHC class I molecules is tapasin dependent and mimics that of calreticulin and not calnexin.
    Harris MR; Lybarger L; Yu YY; Myers NB; Hansen TH
    J Immunol; 2001 Jun; 166(11):6686-92. PubMed ID: 11359824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioredoxin motif of Caenorhabditis elegans PDI-3 provides Cys and His catalytic residues for transglutaminase activity.
    Blaskó B; Mádi A; Fésüs L
    Biochem Biophys Res Commun; 2003 Apr; 303(4):1142-7. PubMed ID: 12684055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of an active-site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization.
    Karala AR; Lappi AK; Ruddock LW
    J Mol Biol; 2010 Mar; 396(4):883-92. PubMed ID: 20026073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin.
    Lundström J; Holmgren A
    Biochemistry; 1993 Jul; 32(26):6649-55. PubMed ID: 8329391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex.
    Peaper DR; Wearsch PA; Cresswell P
    EMBO J; 2005 Oct; 24(20):3613-23. PubMed ID: 16193070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ.
    Shi YY; Tang W; Hao SF; Wang CC
    Biochemistry; 2005 Feb; 44(5):1683-9. PubMed ID: 15683252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The redox activity of ERp57 is not essential for its functions in MHC class I peptide loading.
    Peaper DR; Cresswell P
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10477-82. PubMed ID: 18650385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells.
    Jessop CE; Bulleid NJ
    J Biol Chem; 2004 Dec; 279(53):55341-7. PubMed ID: 15507438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain.
    Frickel EM; Riek R; Jelesarov I; Helenius A; Wuthrich K; Ellgaard L
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):1954-9. PubMed ID: 11842220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of oxidative protein folding and PDI redox state in mammalian cells.
    Mezghrani A; Fassio A; Benham A; Simmen T; Braakman I; Sitia R
    EMBO J; 2001 Nov; 20(22):6288-96. PubMed ID: 11707400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.