These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 16516363)
1. A comparison of phytoremediation capability of selected plant species for given trace elements. Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363 [TBL] [Abstract][Full Text] [Related]
2. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Liang HM; Lin TH; Chiou JM; Yeh KC Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
4. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
5. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Madejón P; Marañón T; Murillo JM; Robinson B Environ Pollut; 2004 Nov; 132(1):145-55. PubMed ID: 15276282 [TBL] [Abstract][Full Text] [Related]
6. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits. Madejón P; Ciadamidaro L; Marañón T; Murillo JM Int J Phytoremediation; 2013; 15(6):602-14. PubMed ID: 23819300 [TBL] [Abstract][Full Text] [Related]
7. Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation II. Plants. Pérez-de-Mora A; Madejón E; Burgos P; Cabrera F Sci Total Environ; 2006 Jun; 363(1-3):38-45. PubMed ID: 16600330 [TBL] [Abstract][Full Text] [Related]
8. Metal accumulation in wild plants surrounding mining wastes. González RC; González-Chávez MC Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286 [TBL] [Abstract][Full Text] [Related]
9. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
10. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965 [TBL] [Abstract][Full Text] [Related]
11. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils? Vondráčková S; Tlustoš P; Száková J Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494 [TBL] [Abstract][Full Text] [Related]
12. Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest. Sardans J; Peñuelas J Environ Pollut; 2007 Jun; 147(3):567-83. PubMed ID: 17137692 [TBL] [Abstract][Full Text] [Related]
13. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Mertens J; Luyssaert S; Verheyen K Environ Pollut; 2005 Nov; 138(1):1-4. PubMed ID: 16023913 [TBL] [Abstract][Full Text] [Related]
14. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
15. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Yanai J; Zhao FJ; McGrath SP; Kosaki T Environ Pollut; 2006 Jan; 139(1):167-75. PubMed ID: 15998562 [TBL] [Abstract][Full Text] [Related]
16. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks. Pérez-de-Mora A; Madejón P; Burgos P; Cabrera F; Lepp NW; Madejón E Environ Pollut; 2011 Oct; 159(10):3018-27. PubMed ID: 21561696 [TBL] [Abstract][Full Text] [Related]
17. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
19. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
20. Growth of Populus alba and its influence on soil trace element availability. Ciadamidaro L; Madejón E; Puschenreiter M; Madejón P Sci Total Environ; 2013 Jun; 454-455():337-47. PubMed ID: 23562686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]