These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1651653)

  • 1. Regulation of Ca(2+)-activated K+ channels by protein kinase A and phosphatase inhibitors.
    Carl A; Kenyon JL; Uemura D; Fusetani N; Sanders KM
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C387-92. PubMed ID: 1651653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of large conductance calcium-activated K+ channel by membrane-delimited protein kinase and phosphatase activities.
    Lee MY; Bang HW; Lim IJ; Uhm DY; Rhee SD
    Pflugers Arch; 1994 Nov; 429(1):150-2. PubMed ID: 7708477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation and dephosphorylation modulate a Ca(2+)-activated K+ channel in rat peptidergic nerve terminals.
    Bielefeldt K; Jackson MB
    J Physiol; 1994 Mar; 475(2):241-54. PubMed ID: 8021831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of ROMK1 K+ channel activity involves phosphorylation processes.
    McNicholas CM; Wang W; Ho K; Hebert SC; Giebisch G
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8077-81. PubMed ID: 8058760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation.
    Kume H; Takai A; Tokuno H; Tomita T
    Nature; 1989 Sep; 341(6238):152-4. PubMed ID: 2550823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase.
    Zhu DM; Tekle E; Chock PB; Huang CY
    Biochemistry; 1996 Jun; 35(22):7214-23. PubMed ID: 8679550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatase inhibitors suppress Ca2+ influx induced by receptor-mediated intracellular Ca2+ store depletion in human platelets.
    Koike Y; Ozaki Y; Qi R; Satoh K; Kurota K; Yatomi Y; Kume S
    Cell Calcium; 1994 May; 15(5):381-90. PubMed ID: 8033196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein phosphatase 1 and an opposing protein kinase regulate steady-state L-type Ca2+ current in mouse cardiac myocytes.
    duBell WH; Rogers TB
    J Physiol; 2004 Apr; 556(Pt 1):79-93. PubMed ID: 14742732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of Na-K-Cl cotransport by protein kinase C is mediated by protein phosphatase 1 in pigmented ciliary epithelial cells.
    Layne J; Yip S; Crook RB
    Exp Eye Res; 2001 Apr; 72(4):371-9. PubMed ID: 11273665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for protein kinases and phosphatases in the Ca(2+)-induced enhancement of hippocampal AMPA receptor-mediated synaptic responses.
    Wyllie DJ; Nicoll RA
    Neuron; 1994 Sep; 13(3):635-43. PubMed ID: 7917294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation enhances inactivation of N-type calcium channel current in bullfrog sympathetic neurons.
    Werz MA; Elmslie KS; Jones SW
    Pflugers Arch; 1993 Sep; 424(5-6):538-45. PubMed ID: 8255738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual effect of phosphatase inhibitors on calcium channels in intestinal smooth muscle cells.
    Obara K; Yabu H
    Am J Physiol; 1993 Feb; 264(2 Pt 1):C296-301. PubMed ID: 8383427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A.
    Reinhart PH; Chung S; Martin BL; Brautigan DL; Levitan IB
    J Neurosci; 1991 Jun; 11(6):1627-35. PubMed ID: 1646298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of epithelial chloride channels by protein phosphatase.
    La BQ; Carosi SL; Valentich J; Shenolikar S; Sansom SC
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1217-23. PubMed ID: 1711776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional study of the effect of phosphatase inhibitors on KCNQ4 channels expressed in Xenopus oocytes.
    Su TR; Chen CH; Huang SJ; Lee CY; Su MC; Chen GH; Li SY; Yang JJ; Lin MJ
    Acta Pharmacol Sin; 2009 Sep; 30(9):1220-6. PubMed ID: 19701239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for protein phosphatase 1 and 2A regulation of K+ channels in two types of leaf cells.
    Li W; Luan S; Schreiber SL; Assmann SM
    Plant Physiol; 1994 Nov; 106(3):963-70. PubMed ID: 7824661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of electrical slow waves and Ca2+ currents of gastric and colonic smooth muscle by phosphatase inhibitors.
    Ward SM; Vogalis F; Blondfield DP; Ozaki H; Fusetani N; Uemura D; Publicover NG; Sanders KM
    Am J Physiol; 1991 Jul; 261(1 Pt 1):C64-70. PubMed ID: 1650138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the Ca2+-activated K+ current sIAHP by a phosphatase-kinase balance under basal conditions in rat CA1 pyramidal neurons.
    Pedarzani P; Krause M; Haug T; Storm JF; Stühmer W
    J Neurophysiol; 1998 Jun; 79(6):3252-6. PubMed ID: 9636123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of protein kinases and phosphatases in signal transduction.
    Hardie DG
    Symp Soc Exp Biol; 1990; 44():241-55. PubMed ID: 1966636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors.
    Holen I; Gordon PB; Seglen PO
    Eur J Biochem; 1993 Jul; 215(1):113-22. PubMed ID: 8393787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.