These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 16517035)

  • 1. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil.
    Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C
    Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field trials to assess the use of iron-bearing industrial by-products for stabilisation of chromated copper arsenate-contaminated soil.
    Lidelöw S; Ragnvaldsson D; Leffler P; Tesfalidet S; Maurice C
    Sci Total Environ; 2007 Nov; 387(1-3):68-78. PubMed ID: 17804040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic.
    Buchireddy PR; Bricka RM; Gent DB
    J Hazard Mater; 2009 Feb; 162(1):490-7. PubMed ID: 18599200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation.
    Bes C; Mench M
    Environ Pollut; 2008 Dec; 156(3):1128-38. PubMed ID: 18486289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil.
    Nordmark D; Kumpiene J; Andreas L; Lagerkvist A
    Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in assisted natural remediation of an arsenic contaminated agricultural soil.
    Mench M; Vangronsveld J; Beckx C; Ruttens A
    Environ Pollut; 2006 Nov; 144(1):51-61. PubMed ID: 16522348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea.
    Kim H; Kim DJ; Koo JH; Park JG; Jang YC
    Sci Total Environ; 2007 Mar; 374(2-3):273-81. PubMed ID: 17292945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat.
    Kumpiene J; Ore S; Lagerkvist A; Maurice C
    Environ Pollut; 2007 Jan; 145(1):365-73. PubMed ID: 16540220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial variability of arsenic and chromium in the soil water at a former wood preserving site.
    Hopp L; Peiffer S; Durner W
    J Contam Hydrol; 2006 May; 85(3-4):159-78. PubMed ID: 16530293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils.
    Hartley W; Lepp NW
    Environ Pollut; 2008 Dec; 156(3):1030-40. PubMed ID: 18524441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments.
    Mench M; Renella G; Gelsomino A; Landi L; Nannipieri P
    Environ Pollut; 2006 Nov; 144(1):24-31. PubMed ID: 16516362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach for arsenic in a contaminated soil: speciation, fractionation, extraction and effluent decontamination.
    Giacomino A; Malandrino M; Abollino O; Velayutham M; Chinnathangavel T; Mentasti E
    Environ Pollut; 2010 Feb; 158(2):416-23. PubMed ID: 19783338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S; Quadri G; Tambone F; Adani F
    Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin.
    Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of water saturation level on arsenic and metal mobility in the Fe-amended soil.
    Kumpiene J; Ragnvaldsson D; Lövgren L; Tesfalidet S; Gustavsson B; Lättström A; Leffler P; Maurice C
    Chemosphere; 2009 Jan; 74(2):206-15. PubMed ID: 18990425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobility of copper, chromium and arsenic from treated timber into grapevines.
    Ko BG; Vogeler I; Bolan NS; Clothier B; Green S; Kennedy J
    Sci Total Environ; 2007 Dec; 388(1-3):35-42. PubMed ID: 17889258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic mobility and stabilization in topsoils.
    Tyrovola K; Nikolaidis NP
    Water Res; 2009 Apr; 43(6):1589-96. PubMed ID: 19201440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil.
    Kumpiene J; Castillo Montesinos I; Lagerkvist A; Maurice C
    Chemosphere; 2007 Feb; 67(2):410-7. PubMed ID: 17166546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review.
    Kumpiene J; Lagerkvist A; Maurice C
    Waste Manag; 2008; 28(1):215-25. PubMed ID: 17320367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.
    Chou S; Colman J; Tylenda C; De Rosa C
    Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.