These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 16517623)
1. Freeze-thaw tolerance and clues to the winter survival of a soil community. Walker VK; Palmer GR; Voordouw G Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623 [TBL] [Abstract][Full Text] [Related]
2. Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils. Wilson SL; Grogan P; Walker VK Can J Microbiol; 2012 Apr; 58(4):402-12. PubMed ID: 22435705 [TBL] [Abstract][Full Text] [Related]
3. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes. Wilson SL; Frazer C; Cumming BF; Nuin PA; Walker VK FEMS Microbiol Ecol; 2012 Nov; 82(2):405-15. PubMed ID: 22551442 [TBL] [Abstract][Full Text] [Related]
4. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Sharma S; Szele Z; Schilling R; Munch JC; Schloter M Appl Environ Microbiol; 2006 Mar; 72(3):2148-54. PubMed ID: 16517665 [TBL] [Abstract][Full Text] [Related]
5. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site. Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195 [TBL] [Abstract][Full Text] [Related]
6. Selection of low-temperature resistance in bacteria and potential applications. Wilson SL; Walker VK Environ Technol; 2010; 31(8-9):943-56. PubMed ID: 20662383 [TBL] [Abstract][Full Text] [Related]
7. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Yergeau E; Kowalchuk GA Environ Microbiol; 2008 Sep; 10(9):2223-35. PubMed ID: 18479442 [TBL] [Abstract][Full Text] [Related]
8. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles. Larson DJ; Barnes BM Physiol Biochem Zool; 2016; 89(4):340-6. PubMed ID: 27327184 [TBL] [Abstract][Full Text] [Related]
9. Ice-active characteristics of soil bacteria selected by ice-affinity. Wilson SL; Kelley DL; Walker VK Environ Microbiol; 2006 Oct; 8(10):1816-24. PubMed ID: 16958762 [TBL] [Abstract][Full Text] [Related]
10. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles. Vimercati L; Hamsher S; Schubert Z; Schmidt SK Extremophiles; 2016 Sep; 20(5):579-88. PubMed ID: 27315166 [TBL] [Abstract][Full Text] [Related]
11. Effects of long-term simulated martian conditions on a freeze-dried and homogenized bacterial permafrost community. Hansen AA; Jensen LL; Kristoffersen T; Mikkelsen K; Merrison J; Finster KW; Lomstein BA Astrobiology; 2009 Mar; 9(2):229-40. PubMed ID: 19371163 [TBL] [Abstract][Full Text] [Related]
12. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment. Stres B; Philippot L; Faganeli J; Tiedje JM FEMS Microbiol Ecol; 2010 Nov; 74(2):323-35. PubMed ID: 20735477 [TBL] [Abstract][Full Text] [Related]
13. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. Sawicka JE; Robador A; Hubert C; Jørgensen BB; Brüchert V ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071 [TBL] [Abstract][Full Text] [Related]
14. [Effects of freeze-thaw on dissolved nitrogen pool, nitrogen transformation processes and diversity of bacterial community in temperate soils]. Pu JH; Jiang N; Juan YH; Chen LJ Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):2893-2902. PubMed ID: 33345490 [TBL] [Abstract][Full Text] [Related]
15. Soil Microbes Trade-Off Biogeochemical Cycling for Stress Tolerance Traits in Response to Year-Round Climate Change. Garcia MO; Templer PH; Sorensen PO; Sanders-DeMott R; Groffman PM; Bhatnagar JM Front Microbiol; 2020; 11():616. PubMed ID: 32477275 [TBL] [Abstract][Full Text] [Related]
16. Effect of freezing and thawing on survival of three bacterial isolates from an arctic soil. Nelson LM; Parkinson D Can J Microbiol; 1978 Dec; 24(12):1468-74. PubMed ID: 747810 [TBL] [Abstract][Full Text] [Related]
17. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis. Doelling AR; Griffis N; Williams JB J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457 [TBL] [Abstract][Full Text] [Related]
18. Climatic variation and seed persistence: freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens. Connolly BM; Orrock JL Oecologia; 2015 Oct; 179(2):609-16. PubMed ID: 26078006 [TBL] [Abstract][Full Text] [Related]
19. Effect of Barley Antifreeze Protein on Dough and Bread during Freezing and Freeze-Thaw Cycles. Ding X; Li T; Zhang H; Guan C; Qian J; Zhou X Foods; 2020 Nov; 9(11):. PubMed ID: 33228238 [TBL] [Abstract][Full Text] [Related]
20. [Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion]. Sun BY; Li ZB; Xiao JB; Zhang LT; Ma B; Li JM; Cheng DB Ying Yong Sheng Tai Xue Bao; 2019 Jan; 30(1):337-347. PubMed ID: 30907557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]