These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 16517623)

  • 41. Winter survival of microbial contaminants in soil: an in situ verification.
    Bucci A; Allocca V; Naclerio G; Capobianco G; Divino F; Fiorillo F; Celico F
    J Environ Sci (China); 2015 Jan; 27():131-8. PubMed ID: 25597671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Freezing induces a loss of freeze tolerance in an overwintering insect.
    Brown CL; Bale JS; Walters KF
    Proc Biol Sci; 2004 Jul; 271(1547):1507-11. PubMed ID: 15306323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Freeze/thaw stress in Ceanothus of southern California chaparral.
    Ewers FW; Lawson MC; Bowen TJ; Davis SD
    Oecologia; 2003 Jul; 136(2):213-9. PubMed ID: 12740694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska.
    Deng J; Gu Y; Zhang J; Xue K; Qin Y; Yuan M; Yin H; He Z; Wu L; Schuur EA; Tiedje JM; Zhou J
    Mol Ecol; 2015 Jan; 24(1):222-34. PubMed ID: 25424441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze-thaw cycles, in the Antarctic Dry Valleys.
    Knox MA; Andriuzzi WS; Buelow HN; Takacs-Vesbach C; Adams BJ; Wall DH
    Ecol Lett; 2017 Oct; 20(10):1242-1249. PubMed ID: 28797136
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues.
    Ji X; Wang M; Li L; Chen F; Zhang Y; Li Q; Zhou J
    Biopreserv Biobank; 2017 Oct; 15(5):475-483. PubMed ID: 28930488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vertical variation of a black soil's properties in response to freeze-thaw cycles and its links to shift of microbial community structure.
    Han Z; Deng M; Yuan A; Wang J; Li H; Ma J
    Sci Total Environ; 2018 Jun; 625():106-113. PubMed ID: 29288997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, and the contents and decomposability of C and N in paddy fields.
    Tang S; Yuan P; Tawaraya K; Tokida T; Fukuoka M; Yoshimoto M; Sakai H; Hasegawa T; Xu X; Cheng W
    Sci Total Environ; 2022 Jan; 802():149870. PubMed ID: 34525703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural freezing as a wastewater treatment method: E. coli inactivation capacity.
    Gao W; Smith DW; Li Y
    Water Res; 2006 Jul; 40(12):2321-6. PubMed ID: 16740289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colloid-facilitated mobilization of metals by freeze-thaw cycles.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2014 Jan; 48(2):977-84. PubMed ID: 24377325
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease.
    Zhang Y; Luo Y; Lu H; Wang N; Shen Y; Chen R; Fang P; Yu H; Wang C; Jia W
    Biopreserv Biobank; 2015 Apr; 13(2):144-6. PubMed ID: 25880475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of freeze-thaw on bank soil mechanical properties and bank stability.
    Yang Z; Mou X; Ji H; Liang Z; Zhang J
    Sci Rep; 2024 Apr; 14(1):9808. PubMed ID: 38684836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw.
    Asadishad B; Olsson AL; Dusane DH; Ghoshal S; Tufenkji N
    Water Res; 2014 Jul; 58():239-47. PubMed ID: 24768703
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of freeze-thaw conditions on arctic soil bacterial communities.
    Kumar N; Grogan P; Chu H; Christiansen CT; Walker VK
    Biology (Basel); 2013 Feb; 2(1):356-77. PubMed ID: 24832666
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil.
    Kato S; Jenkins MB; Fogarty EA; Bowman DD
    J Parasitol; 2002 Aug; 88(4):718-22. PubMed ID: 12197120
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effects of litter addition on the dynamics of soil humic substances during freeze-thaw events in a subalpine forest.].
    Wei XY; Yang YL; Wu FZ; Chen ZH; Chen Y; Dong YL; Zhang L
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2257-2266. PubMed ID: 31418228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Uncontrolled vs Controlled Rate Freeze-Thaw Technologies on Process Performance and Product Quality.
    Padala C; Jameel F; Rathore N; Gupta K; Sethuraman A
    PDA J Pharm Sci Technol; 2010; 64(4):290-8. PubMed ID: 21502029
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades.
    Hengherr S; Worland MR; Reuner A; Brümmer F; Schill RO
    J Exp Biol; 2009 Mar; 212(Pt 6):802-7. PubMed ID: 19251996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.