These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 16517651)
1. Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities. Hallberg KB; Coupland K; Kimura S; Johnson DB Appl Environ Microbiol; 2006 Mar; 72(3):2022-30. PubMed ID: 16517651 [TBL] [Abstract][Full Text] [Related]
2. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609 [TBL] [Abstract][Full Text] [Related]
3. Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain. López-Archilla AI; Gérard E; Moreira D; López-García P FEMS Microbiol Lett; 2004 Jun; 235(2):221-8. PubMed ID: 15183867 [TBL] [Abstract][Full Text] [Related]
4. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Kimura S; Bryan CG; Hallberg KB; Johnson DB Environ Microbiol; 2011 Aug; 13(8):2092-104. PubMed ID: 21382147 [TBL] [Abstract][Full Text] [Related]
5. Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Bruneel O; Duran R; Casiot C; Elbaz-Poulichet F; Personné JC Appl Environ Microbiol; 2006 Jan; 72(1):551-6. PubMed ID: 16391091 [TBL] [Abstract][Full Text] [Related]
6. Evolution of microbial "streamer" growths in an acidic, metal-contaminated stream draining an abandoned underground copper mine. Kay CM; Rowe OF; Rocchetti L; Coupland K; Hallberg KB; Johnson DB Life (Basel); 2013 Feb; 3(1):189-210. PubMed ID: 25371339 [TBL] [Abstract][Full Text] [Related]
7. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Johnson DB; Rolfe S; Hallberg KB; Iversen E Environ Microbiol; 2001 Oct; 3(10):630-7. PubMed ID: 11722543 [TBL] [Abstract][Full Text] [Related]
9. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens". Johnson DB; Hallberg KB; Hedrich S Appl Environ Microbiol; 2014 Jan; 80(2):672-80. PubMed ID: 24242243 [TBL] [Abstract][Full Text] [Related]
10. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Bond PL; Smriga SP; Banfield JF Appl Environ Microbiol; 2000 Sep; 66(9):3842-9. PubMed ID: 10966399 [TBL] [Abstract][Full Text] [Related]
11. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Johnson DB; Bacelar-Nicolau P; Okibe N; Thomas A; Hallberg KB Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1082-9. PubMed ID: 19406797 [TBL] [Abstract][Full Text] [Related]
12. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China. Xie X; Xiao S; He Z; Liu J; Qiu G J Appl Microbiol; 2007 Oct; 103(4):1227-38. PubMed ID: 17897227 [TBL] [Abstract][Full Text] [Related]
13. New cultivation medium for "Ferrovum" and Gallionella-related strains. Tischler JS; Jwair RJ; Gelhaar N; Drechsel A; Skirl AM; Wiacek C; Janneck E; Schlömann M J Microbiol Methods; 2013 Nov; 95(2):138-44. PubMed ID: 23954479 [TBL] [Abstract][Full Text] [Related]
14. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Huang LN FEMS Microbiol Ecol; 2007 Jan; 59(1):118-26. PubMed ID: 17059483 [TBL] [Abstract][Full Text] [Related]
15. Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Abramov SM; Straub D; Tejada J; Grimm L; Schädler F; Bulaev A; Thorwarth H; Amils R; Kappler A; Kleindienst S Appl Environ Microbiol; 2022 Feb; 88(4):e0229021. PubMed ID: 34910570 [TBL] [Abstract][Full Text] [Related]
16. Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Hao C; Wang L; Gao Y; Zhang L; Dong H Extremophiles; 2010 Sep; 14(5):465-74. PubMed ID: 20711792 [TBL] [Abstract][Full Text] [Related]
17. Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. Reardon CL; Cummings DE; Petzke LM; Kinsall BL; Watson DB; Peyton BM; Geesey GG Appl Environ Microbiol; 2004 Oct; 70(10):6037-46. PubMed ID: 15466548 [TBL] [Abstract][Full Text] [Related]
18. Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). García-Moyano A; González-Toril E; Aguilera A; Amils R Syst Appl Microbiol; 2007 Dec; 30(8):601-14. PubMed ID: 17950555 [TBL] [Abstract][Full Text] [Related]
19. Low intraspecific diversity in a polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Hahn MW; Pöckl M; Wu QL Appl Environ Microbiol; 2005 Aug; 71(8):4539-47. PubMed ID: 16085847 [TBL] [Abstract][Full Text] [Related]
20. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. McBeth JM; Fleming EJ; Emerson D Environ Microbiol Rep; 2013 Jun; 5(3):453-63. PubMed ID: 23754725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]