BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16518333)

  • 1. Detection of evolving acute tubular necrosis with renal 23Na MRI: studies in rats.
    Maril N; Margalit R; Rosen S; Heyman SN; Degani H
    Kidney Int; 2006 Feb; 69(4):765-8. PubMed ID: 16518333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early monitoring of acute tubular necrosis in the rat kidney by 23Na-MRI.
    Atthe BK; Babsky AM; Hopewell PN; Phillips CL; Molitoris BA; Bansal N
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1288-98. PubMed ID: 19726545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional sodium magnetic resonance imaging of the intact rat kidney.
    Maril N; Margalit R; Mispelter J; Degani H
    Kidney Int; 2004 Mar; 65(3):927-35. PubMed ID: 14871412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative in vivo 23Na MR imaging of the healthy human kidney: determination of physiological ranges at 3.0T with comparison to DWI and BOLD.
    Haneder S; Kettnaker P; Konstandin S; Morelli JN; Schad LR; Schoenberg SO; Michaely HJ
    MAGMA; 2013 Dec; 26(6):501-9. PubMed ID: 23475308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute renal rejection versus acute tubular necrosis in a canine model: MR evaluation.
    Rholl KS; Lee JK; Ling D; Sicard GA; Griffith RC; Freeman M
    Radiology; 1986 Jul; 160(1):113-7. PubMed ID: 3520644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual energy CT monitoring of the renal corticomedullary sodium gradient in swine.
    Kumar R; Wang ZJ; Forsythe C; Fu Y; Chen YY; Yeh BM
    Eur J Radiol; 2012 Mar; 81(3):423-9. PubMed ID: 21237601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging in the diagnosis of acute renal allograft rejection and its differentiation from acute tubular necrosis. Experimental study in the dog.
    Terrier F; Hricak H; Revel D; Alpers C; Bretan P; Ehman RL; Feduska NJ
    Invest Radiol; 1985 Sep; 20(6):617-25. PubMed ID: 3905693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional evaluation of transplanted kidneys by Gd-DTPA enhanced turbo FLASH MR imaging.
    Nakashima R; Yamashita Y; Tomiguchi S; Tsuji A; Takahashi M
    Radiat Med; 1996; 14(5):251-6. PubMed ID: 8988504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the renal corticomedullary (23)Na gradient using isotropic data sets.
    Haneder S; Konstandin S; Morelli JN; Schad LR; Schoenberg SO; Michaely HJ
    Acad Radiol; 2013 Apr; 20(4):407-13. PubMed ID: 23498980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging (MRI) and pathophysiology of the rat kidney in streptozotocin-induced diabetes.
    Lohr J; Mazurchuk RJ; Acara MA; Nickerson PA; Fiel RJ
    Magn Reson Imaging; 1991; 9(1):93-100. PubMed ID: 1647477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What causes diminished corticomedullary differentiation in renal insufficiency?
    Lee VS; Kaur M; Bokacheva L; Chen Q; Rusinek H; Thakur R; Moses D; Nazzaro C; Kramer EL
    J Magn Reson Imaging; 2007 Apr; 25(4):790-5. PubMed ID: 17335025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium magnetic resonance imaging of diuresis: spatial and kinetic response.
    Maril N; Margalit R; Mispelter J; Degani H
    Magn Reson Med; 2005 Mar; 53(3):545-52. PubMed ID: 15723399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations.
    Szolar DH; Preidler K; Ebner F; Kammerhuber F; Horn S; Ratschek M; Ranner G; Petritsch P; Horina JH
    Magn Reson Imaging; 1997; 15(7):727-35. PubMed ID: 9309603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance.
    Goldfarb M; Rosenberger C; Abassi Z; Shina A; Zilbersat F; Eckardt KU; Rosen S; Heyman SN
    Am J Nephrol; 2006; 26(1):22-33. PubMed ID: 16508244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium MRI of a human transplanted kidney.
    Rosen Y; Lenkinski RE
    Acad Radiol; 2009 Jul; 16(7):886-9. PubMed ID: 19375951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of corticomedullary demarcation on magnetic resonance imaging: an index of biopsy-proven acute renal transplant dysfunction.
    Dunbar KR; Salomon DR; Kaude J; Wingo CS; Peterson JC; Croker BP; Thompson RD; Pfaff WW; Howard RJ; Tisher CC
    Am J Kidney Dis; 1988 Sep; 12(3):200-7. PubMed ID: 3046342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inner medullary collecting duct function in ischemic acute renal failure.
    Wilson DR; Honrath U
    Clin Invest Med; 1988 Jun; 11(3):157-66. PubMed ID: 3402104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial alterations in renal cortex in acute tubular necrosis (ATN) post-renal transplantation and in patients with ATN not related to renal transplant.
    Moyses Neto M; Costa RS; Volpini RA; Garcia TM; Rodrigues FF; Coimbra TM
    Clin Transplant; 2004 Apr; 18(2):156-65. PubMed ID: 15016130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo sodium (23Na) imaging of the human kidneys at 7 T: preliminary results.
    Haneder S; Juras V; Michaely HJ; Deligianni X; Bieri O; Schoenberg SO; Trattnig S; Zbýň Š
    Eur Radiol; 2014 Feb; 24(2):494-501. PubMed ID: 24081646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of down-regulated CHIF mRNA in the pathophysiology of hyperkalemia of acute tubular necrosis.
    Shustin L; Wald H; Popovtzer MM
    Am J Kidney Dis; 1998 Oct; 32(4):600-4. PubMed ID: 9774121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.