These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16518570)

  • 1. Role of hyperpolarization-activated conductances in the lateral superior olive: a modeling study.
    Szalisznyó K
    J Comput Neurosci; 2006 Apr; 20(2):137-52. PubMed ID: 16518570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning bat LSO neurons to interaural intensity differences through spike-timing dependent plasticity.
    Fontaine B; Peremans H
    Biol Cybern; 2007 Oct; 97(4):261-7. PubMed ID: 17899163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane properties of principal neurons of the lateral superior olive.
    Adam TJ; Finlayson PG; Schwarz DW
    J Neurophysiol; 2001 Aug; 86(2):922-34. PubMed ID: 11495961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of interaural intensity differences in the LSO: role of interaural threshold differences.
    Park TJ; Monsivais P; Pollak GD
    J Neurophysiol; 1997 Jun; 77(6):2863-78. PubMed ID: 9212244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-voltage activated Kv1.1 subunits are crucial for the processing of sound source location in the lateral superior olive in mice.
    Karcz A; Hennig MH; Robbins CA; Tempel BL; Rübsamen R; Kopp-Scheinpflug C
    J Physiol; 2011 Mar; 589(Pt 5):1143-57. PubMed ID: 21224222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the precision of neural computation with interaural level differences in the lateral superior olive.
    Bures Z; Marsalek P
    Brain Res; 2013 Nov; 1536():16-26. PubMed ID: 23684714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition.
    Pecka M; Brand A; Behrend O; Grothe B
    J Neurosci; 2008 Jul; 28(27):6914-25. PubMed ID: 18596166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds.
    Ashida G; Kretzberg J; Tollin DJ
    PLoS Comput Biol; 2016 Jun; 12(6):e1004997. PubMed ID: 27322612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IID sensitivity differs between two principal centers in the interaural intensity difference pathway: the LSO and the IC.
    Park TJ
    J Neurophysiol; 1998 May; 79(5):2416-31. PubMed ID: 9582217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The medial nucleus of the trapezoid body in rat: spectral and temporal properties vary with anatomical location of the units.
    Tolnai S; Hernandez O; Englitz B; Rübsamen R; Malmierca MS
    Eur J Neurosci; 2008 May; 27(10):2587-98. PubMed ID: 18547245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive.
    Barnes-Davies M; Barker MC; Osmani F; Forsythe ID
    Eur J Neurosci; 2004 Jan; 19(2):325-33. PubMed ID: 14725627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of dendritic synaptic processing in the lateral superior olive by hyperpolarization-activated currents.
    Leão KE; Leão RN; Walmsley B
    Eur J Neurosci; 2011 Apr; 33(8):1462-70. PubMed ID: 21366727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem.
    Beiderbeck B; Myoga MH; Müller NIC; Callan AR; Friauf E; Grothe B; Pecka M
    Nat Commun; 2018 May; 9(1):1771. PubMed ID: 29720589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory synaptic inputs with slower kinetics than LSO principal neurons.
    Sterenborg JC; Pilati N; Sheridan CJ; Uchitel OD; Forsythe ID; Barnes-Davies M
    Hear Res; 2010 Dec; 270(1-2):119-26. PubMed ID: 20813177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational principles of neural adaptation for binaural signal integration.
    Oess T; Ernst MO; Neumann H
    PLoS Comput Biol; 2020 Jul; 16(7):e1008020. PubMed ID: 32678847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking neurons learning phase delays: how mammals may develop auditory time-difference sensitivity.
    Leibold C; van Hemmen JL
    Phys Rev Lett; 2005 Apr; 94(16):168102. PubMed ID: 15904267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiking neural network model of sound localization using the interaural intensity difference.
    Wall JA; McDaid LJ; Maguire LP; McGinnity TM
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):574-86. PubMed ID: 24805041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principal cells of the brainstem's interaural sound level detector are temporal differentiators rather than integrators.
    Franken TP; Joris PX; Smith PH
    Elife; 2018 Jun; 7():. PubMed ID: 29901438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical description of coincidence detection synaptic mechanisms in the auditory pathway.
    Toth PG; Marsalek P
    Biosystems; 2015 Oct; 136():90-8. PubMed ID: 26190796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.