BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 16518674)

  • 1. Modelling wetland bird response to water level changes in the Lake Ontario - St. Lawrence River hydrosystem.
    Desgranges JL; Ingram J; Drolet B; Morin J; Savage C; Borcard D
    Environ Monit Assess; 2006 Feb; 113(1-3):329-65. PubMed ID: 16518674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario - St. Lawrence River Basin.
    Hudon C; Wilcox D; Ingram J
    Environ Monit Assess; 2006 Feb; 113(1-3):303-28. PubMed ID: 16502038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowing, mapping and understanding St. Lawrence biodiversity, with special emphasis on bird assemblages.
    Desgranges JL; Jobin B
    Environ Monit Assess; 2003; 88(1-3):177-92. PubMed ID: 14570415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herring gulls and great black-backed gulls as indicators of contaminants in bald eagles in Lake Ontario, Canada.
    Weseloh DV; Hughes KD; Ewins PJ; Best D; Kubiak T; Shieldcastle MC
    Environ Toxicol Chem; 2002 May; 21(5):1015-25. PubMed ID: 12013123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water depth influences survival and predator-specific patterns of nest loss in three secretive marsh bird species.
    Schmidt SM; Fournier AMV; Osborn JM; Benson TJ
    Ecol Evol; 2023 Dec; 13(12):e10823. PubMed ID: 38089901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal (1970-2016) changes in human pressures and wetland response in the St. Lawrence River (Québec, Canada).
    Hudon C; Jean M; Létourneau G
    Sci Total Environ; 2018 Dec; 643():1137-1151. PubMed ID: 30189531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The causes of dispersal and the cost of carry-over effects for an endangered bird in a dynamic wetland landscape.
    Robertson EP; Fletcher RJ; Austin JD
    J Anim Ecol; 2017 Jul; 86(4):857-865. PubMed ID: 28378359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of environmental parameters with special emphasis on avifaunal breeding season in the coastal wetland of Point Calimere Wildlife Sanctuary, Southeast coast of India.
    Viji R; Shrinithivihahshini ND; Ranjeetha R; Santhanam P; Narayanan PSR; Balakrishnan S
    Mar Pollut Bull; 2018 Jun; 131(Pt A):233-238. PubMed ID: 29886942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of water-level variability on fish assemblage and natural reproduction following connectivity enhancement in a Typha-dominated coastal wetland, USA.
    Leblanc JP; Farrell JM
    J Fish Biol; 2023 Sep; 103(3):574-592. PubMed ID: 37249445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A statistical approach on distribution and seasonal habitat use of waterfowl and shorebirds in Çıldır Lake (Ardahan, Türkiye).
    Azizoglu E; Kara R; Celik E
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77371-77384. PubMed ID: 37256398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking stream flow and groundwater to avian habitat in a desert riparian system.
    Merritt DM; Bateman HL
    Ecol Appl; 2012 Oct; 22(7):1973-88. PubMed ID: 23210313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of habitat disturbance from residential development on breeding bird communities in riparian corridors.
    Lussier SM; Enser RW; Dasilva SN; Charpentier M
    Environ Manage; 2006 Sep; 38(3):504-21. PubMed ID: 16738815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproductive consequences of climate variability in migratory birds: evidence for species-specific responses to spring phenology and cross-seasonal effects.
    Raquel AJ; Devries JH; Howerter DW; Clark RG
    Oecologia; 2019 Sep; 191(1):217-229. PubMed ID: 31435755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bird distributions relative to remotely sensed habitats in Great Britain: towards a framework for national modelling.
    Fuller RM; Devereux BJ; Gillings S; Hill RA; Amable GS
    J Environ Manage; 2007 Sep; 84(4):586-605. PubMed ID: 17005315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multispecies benefits of wetland conservation for marsh birds, frogs, and species at risk.
    Tozer DC; Steele O; Gloutney M
    J Environ Manage; 2018 Apr; 212():160-168. PubMed ID: 29428650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of adjacent land use and isolation on marsh bird communities.
    Smith LA; Chow-Fraser P
    Environ Manage; 2010 May; 45(5):1040-51. PubMed ID: 20358198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.
    Gao JH; Jia J; Kettner AJ; Xing F; Wang YP; Xu XN; Yang Y; Zou XQ; Gao S; Qi S; Liao F
    Sci Total Environ; 2014 May; 481():542-53. PubMed ID: 24631617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian community responses to variability in river hydrology.
    Royan A; Hannah DM; Reynolds SJ; Noble DG; Sadler JP
    PLoS One; 2013; 8(12):e83221. PubMed ID: 24340094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of macroinvertebrate assemblages to environmental variations in the river-oxbow lake system of the Zoige wetland (Bai River, Qinghai-Tibet Plateau).
    Zhou X; Xu M; Wang Z; Yu B; Shao X
    Sci Total Environ; 2019 Apr; 659():150-160. PubMed ID: 30597465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying important military installations for continental-scale conservation of marsh bird breeding habitat.
    Stevens BS; Conway CJ
    J Environ Manage; 2019 Dec; 252():109664. PubMed ID: 31610450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.