These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16518694)

  • 21. Reductive methylation and pKa determination of the lysine side chains in calbindin D9k.
    Zhang M; Thulin E; Vogel HJ
    J Protein Chem; 1994 Aug; 13(6):527-35. PubMed ID: 7832981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterization of two alternate conformations in a calbindin D₉k-based molecular switch.
    Stratton MM; McClendon S; Eliezer D; Loh SN
    Biochemistry; 2011 Jun; 50(25):5583-9. PubMed ID: 21618991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An extended hydrophobic core induces EF-hand swapping.
    Håkansson M; Svensson A; Fast J; Linse S
    Protein Sci; 2001 May; 10(5):927-33. PubMed ID: 11316872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calbindin D(9k) knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level.
    Kutuzova GD; Akhter S; Christakos S; Vanhooke J; Kimmel-Jehan C; Deluca HF
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12377-81. PubMed ID: 16895982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring the early steps of unfolding of dicalcium and mono-Ce3+-substituted forms of P43M calbindin D9k.
    Jiménez B; Poggi L; Piccioli M
    Biochemistry; 2003 Nov; 42(44):13066-73. PubMed ID: 14596622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy for the study of paramagnetic proteins with slow electronic relaxation rates by nmr spectroscopy: application to oxidized human [2Fe-2S] ferredoxin.
    Machonkin TE; Westler WM; Markley JL
    J Am Chem Soc; 2004 May; 126(17):5413-26. PubMed ID: 15113213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 13C direct detection experiments on the paramagnetic oxidized monomeric copper, zinc superoxide dismutase.
    Bermel W; Bertini I; Felli IC; Kümmerle R; Pierattelli R
    J Am Chem Soc; 2003 Dec; 125(52):16423-9. PubMed ID: 14692785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency of paramagnetism-based constraints to determine the spatial arrangement of alpha-helical secondary structure elements.
    Bertini I; Longinetti M; Luchinat C; Parigi G; Sgheri L
    J Biomol NMR; 2002 Feb; 22(2):123-36. PubMed ID: 11883774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 13C direct detected experiments: optimization for paramagnetic signals.
    Bertini I; Jiménez B; Piccioli M
    J Magn Reson; 2005 May; 174(1):125-32. PubMed ID: 15809180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Focusing of the electrostatic potential at EF-hands of calbindin D(9k): titration of acidic residues.
    Kesvatera T; Jönsson B; Thulin E; Linse S
    Proteins; 2001 Nov; 45(2):129-35. PubMed ID: 11562942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lanthanide induced residual dipolar couplings for the conformational investigation of peripheral 15NH2 moieties.
    Bertini I; Felli IC; Luchinat C
    J Biomol NMR; 2000 Dec; 18(4):347-55. PubMed ID: 11200529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The EF-hand domain: a globally cooperative structural unit.
    Nelson MR; Thulin E; Fagan PA; Forsén S; Chazin WJ
    Protein Sci; 2002 Feb; 11(2):198-205. PubMed ID: 11790829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calbindin D(9k): a protein optimized for calcium binding at neutral pH.
    Kesvatera T; Jönsson B; Telling A; Tõugu V; Vija H; Thulin E; Linse S
    Biochemistry; 2001 Dec; 40(50):15334-40. PubMed ID: 11735416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Backbone NMR assignments and H/D exchange studies on the ferric azide- and cyanide-inhibited forms of Pseudomonas aeruginosa heme oxygenase.
    Rodríguez JC; Wilks A; Rivera M
    Biochemistry; 2006 Apr; 45(14):4578-92. PubMed ID: 16584193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of calbindin-D decreases with age in intestine and kidney.
    Armbrecht HJ; Boltz M; Strong R; Richardson A; Bruns ME; Christakos S
    Endocrinology; 1989 Dec; 125(6):2950-6. PubMed ID: 2583050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the use of pseudocontact shifts in the structure determination of metalloproteins.
    Jensen MR; Hansen DF; Ayna U; Dagil R; Hass MA; Christensen HE; Led JJ
    Magn Reson Chem; 2006 Mar; 44(3):294-301. PubMed ID: 16477687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues.
    Löhr F; Rogov VV; Shi M; Bernhard F; Dötsch V
    J Biomol NMR; 2005 Aug; 32(4):309-28. PubMed ID: 16211484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination.
    Biekofsky RR; Martin SR; Browne JP; Bayley PM; Feeney J
    Biochemistry; 1998 May; 37(20):7617-29. PubMed ID: 9585577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New routes to the detection of relaxation allowed coherence transfer in paramagnetic molecules.
    Kateb F; Piccioli M
    J Am Chem Soc; 2003 Dec; 125(49):14978-9. PubMed ID: 14653719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR order parameters calculated in an expanding reference frame: identifying sites of short- and long-range motion.
    Johnson E
    J Biomol NMR; 2011 May; 50(1):59-70. PubMed ID: 21503632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.