These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16518697)

  • 41. Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings.
    Wöhnert J; Franz KJ; Nitz M; Imperiali B; Schwalbe H
    J Am Chem Soc; 2003 Nov; 125(44):13338-9. PubMed ID: 14583012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Backbone resonance assignment and order tensor estimation using residual dipolar couplings.
    Shealy P; Liu Y; Simin M; Valafar H
    J Biomol NMR; 2011 Aug; 50(4):357-69. PubMed ID: 21667298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin.
    Haller JD; Schanda P
    J Biomol NMR; 2013 Nov; 57(3):263-80. PubMed ID: 24105432
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural and dynamic analysis of residual dipolar coupling data for proteins.
    Tolman JR; Al-Hashimi HM; Kay LE; Prestegard JH
    J Am Chem Soc; 2001 Feb; 123(7):1416-24. PubMed ID: 11456715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the interpretation of residual dipolar couplings as reporters of molecular dynamics.
    Fredriksson K; Louhivuori M; Permi P; Annila A
    J Am Chem Soc; 2004 Oct; 126(39):12646-50. PubMed ID: 15453798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing heteronuclear (15)N-(17)O and (13)C-(17)O connectivities and proximities by solid-state NMR spectroscopy.
    Hung I; Uldry AC; Becker-Baldus J; Webber AL; Wong A; Smith ME; Joyce SA; Yates JR; Pickard CJ; Dupree R; Brown SP
    J Am Chem Soc; 2009 Feb; 131(5):1820-34. PubMed ID: 19138069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.
    Sanders CR
    Biophys J; 1993 Jan; 64(1):171-81. PubMed ID: 8431541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
    Cornilescu G; Bahrami A; Tonelli M; Markley JL; Eghbalnia HR
    J Biomol NMR; 2007 Aug; 38(4):341-51. PubMed ID: 17610130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein backbone motions viewed by intraresidue and sequential HN-Halpha residual dipolar couplings.
    Vögeli B; Yao L; Bax A
    J Biomol NMR; 2008 May; 41(1):17-28. PubMed ID: 18458825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Composite alignment media for the measurement of independent sets of NMR residual dipolar couplings.
    Ruan K; Tolman JR
    J Am Chem Soc; 2005 Nov; 127(43):15032-3. PubMed ID: 16248635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.
    Ortega-Roldan JL; Jensen MR; Brutscher B; Azuaga AI; Blackledge M; van Nuland NA
    Nucleic Acids Res; 2009 May; 37(9):e70. PubMed ID: 19359362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase.
    Maltsev AS; Grishaev A; Roche J; Zasloff M; Bax A
    J Am Chem Soc; 2014 Mar; 136(10):3752-5. PubMed ID: 24568736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of protein dynamics from residual dipolar couplings using the three dimensional Gaussian axial fluctuation model.
    Bouvignies G; Markwick PR; Blackledge M
    Proteins; 2008 Apr; 71(1):353-63. PubMed ID: 17957769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local dynamic amplitudes on the protein backbone from dipolar couplings: toward the elucidation of slower motions in biomolecules.
    Bernadó P; Blackledge M
    J Am Chem Soc; 2004 Jun; 126(25):7760-1. PubMed ID: 15212507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.
    Clore GM; Schwieters CD
    Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of methyl rotation axis order parameters derived from model-free analyses of (2)H and (13)C longitudinal and transverse relaxation rates measured in the same protein sample.
    Ishima R; Petkova AP; Louis JM; Torchia DA
    J Am Chem Soc; 2001 Jun; 123(25):6164-71. PubMed ID: 11414851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins.
    Bermel W; Bertini I; Felli IC; Peruzzini R; Pierattelli R
    Chemphyschem; 2010 Feb; 11(3):689-95. PubMed ID: 20077554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Projection angle restraints for studying structure and dynamics of biomolecules.
    Griesinger C; Peti W; Meiler J; Brüschweiler R
    Methods Mol Biol; 2004; 278():107-21. PubMed ID: 15317994
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Residual dipolar couplings in protein structure determination.
    de Alba E; Tjandra N
    Methods Mol Biol; 2004; 278():89-106. PubMed ID: 15317993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.