These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16519231)

  • 1. Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes.
    Mank JE; Avise JC
    Proc Biol Sci; 2006 Jan; 273(1582):33-8. PubMed ID: 16519231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes.
    Mank JE; Avise JC
    Genetica; 2006 May; 127(1-3):321-7. PubMed ID: 16850236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mating preferences, sexual selection and patterns of cladogenesis in ray-finned fishes.
    Mank JE
    J Evol Biol; 2007 Mar; 20(2):597-602. PubMed ID: 17305826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study.
    Li C; Ortí G; Zhang G; Lu G
    BMC Evol Biol; 2007 Mar; 7():44. PubMed ID: 17374158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversification Rate is Associated with Rate of Molecular Evolution in Ray-Finned Fish (Actinopterygii).
    Ritchie AM; Hua X; Bromham L
    J Mol Evol; 2022 Apr; 90(2):200-214. PubMed ID: 35262772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coevolution of the olfactory organ and its receptor repertoire in ray-finned fishes.
    Policarpo M; Bemis KE; Laurenti P; Legendre L; Sandoz JC; Rétaux S; Casane D
    BMC Biol; 2022 Sep; 20(1):195. PubMed ID: 36050670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the immune system influences speciation rates in teleost fishes.
    Malmstrøm M; Matschiner M; Tørresen OK; Star B; Snipen LG; Hansen TF; Baalsrud HT; Nederbragt AJ; Hanel R; Salzburger W; Stenseth NC; Jakobsen KS; Jentoft S
    Nat Genet; 2016 Oct; 48(10):1204-10. PubMed ID: 27548311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.
    Hughes LC; Ortí G; Huang Y; Sun Y; Baldwin CC; Thompson AW; Arcila D; Betancur-R R; Li C; Becker L; Bellora N; Zhao X; Li X; Wang M; Fang C; Xie B; Zhou Z; Huang H; Chen S; Venkatesh B; Shi Q
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6249-6254. PubMed ID: 29760103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular phylogeny and patterns of diversification in syngnathid fishes.
    Hamilton H; Saarman N; Short G; Sellas AB; Moore B; Hoang T; Grace CL; Gomon M; Crow K; Brian Simison W
    Mol Phylogenet Evol; 2017 Feb; 107():388-403. PubMed ID: 27989632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution and diversity of fish genomes.
    Venkatesh B
    Curr Opin Genet Dev; 2003 Dec; 13(6):588-92. PubMed ID: 14638319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and Expression of Tissue Globins in Ray-Finned Fishes.
    Gallagher MD; Macqueen DJ
    Genome Biol Evol; 2017 Jan; 9(1):32-47. PubMed ID: 28173090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boom and bust: ancient and recent diversification in bichirs (Polypteridae: Actinopterygii), a relictual lineage of ray-finned fishes.
    Near TJ; Dornburg A; Tokita M; Suzuki D; Brandley MC; Friedman M
    Evolution; 2014 Apr; 68(4):1014-26. PubMed ID: 24274466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes.
    Suzuki D; Brandley MC; Tokita M
    BMC Evol Biol; 2010 Jan; 10():21. PubMed ID: 20100320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole Genome Sequencing of the Asian Arowana (Scleropages formosus) Provides Insights into the Evolution of Ray-Finned Fishes.
    Austin CM; Tan MH; Croft LJ; Hammer MP; Gan HM
    Genome Biol Evol; 2015 Oct; 7(10):2885-95. PubMed ID: 26446539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coelacanth genomes reveal signatures for evolutionary transition from water to land.
    Nikaido M; Noguchi H; Nishihara H; Toyoda A; Suzuki Y; Kajitani R; Suzuki H; Okuno M; Aibara M; Ngatunga BP; Mzighani SI; Kalombo HW; Masengi KW; Tuda J; Nogami S; Maeda R; Iwata M; Abe Y; Fujimura K; Okabe M; Amano T; Maeno A; Shiroishi T; Itoh T; Sugano S; Kohara Y; Fujiyama A; Okada N
    Genome Res; 2013 Oct; 23(10):1740-8. PubMed ID: 23878157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome size evolution in New Zealand triplefin fishes.
    Hickey AJ; Clements KD
    J Hered; 2005; 96(4):356-62. PubMed ID: 15858158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.
    Guinot G; Cavin L
    Biol Rev Camb Philos Soc; 2016 Nov; 91(4):950-981. PubMed ID: 26105527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater.
    Corush JB
    BMC Evol Biol; 2019 Aug; 19(1):168. PubMed ID: 31412761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies.
    Sun Y; Huang Y; Li X; Baldwin CC; Zhou Z; Yan Z; Crandall KA; Zhang Y; Zhao X; Wang M; Wong A; Fang C; Zhang X; Huang H; Lopez JV; Kilfoyle K; Zhang Y; Ortí G; Venkatesh B; Shi Q
    Gigascience; 2016; 5():18. PubMed ID: 27144000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.
    Rabosky DL; Santini F; Eastman J; Smith SA; Sidlauskas B; Chang J; Alfaro ME
    Nat Commun; 2013; 4():1958. PubMed ID: 23739623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.