These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16519243)

  • 21. The earliest pterodactyloid and the origin of the group.
    Andres B; Clark J; Xu X
    Curr Biol; 2014 May; 24(9):1011-6. PubMed ID: 24768054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.
    Holden D; Socha JJ; Cardwell ND; Vlachos PP
    J Exp Biol; 2014 Feb; 217(Pt 3):382-94. PubMed ID: 24477611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerodynamic characteristics of flying fish in gliding flight.
    Park H; Choi H
    J Exp Biol; 2010 Oct; 213(Pt 19):3269-79. PubMed ID: 20833919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.
    Marden JH
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1077-84. PubMed ID: 8184949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prenatal development in pterosaurs and its implications for their postnatal locomotory ability.
    Unwin DM; Deeming DC
    Proc Biol Sci; 2019 Jun; 286(1904):20190409. PubMed ID: 31185866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats.
    Bell E; Andres B; Goswami A
    J Evol Biol; 2011 Dec; 24(12):2586-99. PubMed ID: 21955123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using physical models to study the gliding performance of extinct animals.
    Koehl MA; Evangelista D; Yang K
    Integr Comp Biol; 2011 Dec; 51(6):1002-18. PubMed ID: 21937667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using your head - cranial steering in pterosaurs.
    Henderson DM
    Naturwissenschaften; 2024 May; 111(3):29. PubMed ID: 38713269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics of the bat limb skeleton: scaling, material properties and mechanics.
    Swartz SM; Middleton KM
    Cells Tissues Organs; 2008; 187(1):59-84. PubMed ID: 18160803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unsteady aerodynamics of insect flight.
    Ellington CP
    Symp Soc Exp Biol; 1995; 49():109-29. PubMed ID: 8571220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolving physically simulated flying creatures for efficient cruising.
    Shim YS; Kim CH
    Artif Life; 2006; 12(4):561-91. PubMed ID: 16953786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lift generation by the avian tail.
    Maybury WJ; Rayner JM; Couldrick LB
    Proc Biol Sci; 2001 Jul; 268(1475):1443-8. PubMed ID: 11454286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Premaxillary crest variation within the Wukongopteridae (Reptilia, Pterosauria) and comments on cranial structures in pterosaurs.
    Cheng X; Jiang S; Wang X; Kellner AWA
    An Acad Bras Cienc; 2017; 89(1):119-130. PubMed ID: 28198921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis.
    Bestwick J; Unwin DM; Butler RJ; Purnell MA
    Nat Commun; 2020 Oct; 11(1):5293. PubMed ID: 33116130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Reappraisal of the Purported Gastric Pellet with Pterosaurian Bones from the Upper Triassic of Italy.
    Holgado B; Dalla Vecchia FM; Fortuny J; Bernardini F; Tuniz C
    PLoS One; 2015; 10(11):e0141275. PubMed ID: 26560101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.