These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16519494)

  • 1. Sintering of passivated gold nanoparticles under the electron beam.
    Chen Y; Palmer RE; Wilcoxon JP
    Langmuir; 2006 Mar; 22(6):2851-5. PubMed ID: 16519494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of titanium dioxide nanoparticle sintering.
    Koparde VN; Cummings PT
    J Phys Chem B; 2005 Dec; 109(51):24280-7. PubMed ID: 16375425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM.
    Simonsen SB; Chorkendorff I; Dahl S; Skoglundh M; Sehested J; Helveg S
    J Am Chem Soc; 2010 Jun; 132(23):7968-75. PubMed ID: 20481529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles.
    Ha JM; Solovyov A; Katz A
    Langmuir; 2009 Sep; 25(18):10548-53. PubMed ID: 19645476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvation structure and dynamics for passivated Au nanoparticle in supercritical CO2: a molecular dynamic simulation.
    Hu Y; Wu B; Xu Z; Yang Z; Yang X
    J Colloid Interface Sci; 2011 Jan; 353(1):22-9. PubMed ID: 20934708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization.
    Blake P; Ahn W; Roper DK
    Langmuir; 2010 Feb; 26(3):1533-8. PubMed ID: 20000360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation of interaction between passivated gold nanoparticles in supercritical CO2.
    Sun L; Yang X; Wu B; Tang L
    J Chem Phys; 2011 Nov; 135(20):204703. PubMed ID: 22128948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation dynamics and transient behavior of small arenethiol passivated gold nanoparticles.
    Busby M; Chiorboli C; Scandola F
    J Phys Chem B; 2006 Mar; 110(12):6020-6. PubMed ID: 16553412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation.
    Gorin DA; Portnov SA; Inozemtseva OA; Luklinska Z; Yashchenok AM; Pavlov AM; Skirtach AG; Möhwald H; Sukhorukov GB
    Phys Chem Chem Phys; 2008 Dec; 10(45):6899-905. PubMed ID: 19015796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion-induced adsorption of ferrocenated nanoparticles.
    Stiles RL; Balasubramanian R; Feldberg SW; Murray RW
    J Am Chem Soc; 2008 Feb; 130(6):1856-65. PubMed ID: 18198868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer behavior of monolayer protected nanoclusters and nanowires of silver and gold.
    Sharma J; Vivek JP; Vijayamohanan KP
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3464-9. PubMed ID: 17252790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Various modes of void closure during dry sintering of close-packed nanoparticles.
    Nawaz Q; Rharbi Y
    Langmuir; 2010 Jan; 26(2):1226-31. PubMed ID: 19845341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced electron transfer between chlorophyll a and gold nanoparticles.
    Barazzouk S; Kamat PV; Hotchandani S
    J Phys Chem B; 2005 Jan; 109(2):716-23. PubMed ID: 16866432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.