These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 16519513)
1. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha. DuBois JL; Klinman JP Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513 [TBL] [Abstract][Full Text] [Related]
2. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase. Hevel JM; Mills SA; Klinman JP Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756 [TBL] [Abstract][Full Text] [Related]
3. The nature of O2 reactivity leading to topa quinone in the copper amine oxidase from Hansenula polymorpha and its relationship to catalytic turnover. DuBois JL; Klinman JP Biochemistry; 2005 Aug; 44(34):11381-8. PubMed ID: 16114875 [TBL] [Abstract][Full Text] [Related]
4. Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast. Schwartz B; Green EL; Sanders-Loehr J; Klinman JP Biochemistry; 1998 Nov; 37(47):16591-600. PubMed ID: 9843426 [TBL] [Abstract][Full Text] [Related]
5. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor. Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714 [TBL] [Abstract][Full Text] [Related]
6. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism. Welford RW; Lam A; Mirica LM; Klinman JP Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423 [TBL] [Abstract][Full Text] [Related]
7. Mutation at a strictly conserved, active site tyrosine in the copper amine oxidase leads to uncontrolled oxygenase activity. Chen ZW; Datta S; Dubois JL; Klinman JP; Mathews FS Biochemistry; 2010 Aug; 49(34):7393-402. PubMed ID: 20684524 [TBL] [Abstract][Full Text] [Related]
8. Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis. Matsuzaki R; Tanizawa K Biochemistry; 1998 Oct; 37(40):13947-57. PubMed ID: 9760229 [TBL] [Abstract][Full Text] [Related]
9. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha. Plastino J; Green EL; Sanders-Loehr J; Klinman JP Biochemistry; 1999 Jun; 38(26):8204-16. PubMed ID: 10387066 [TBL] [Abstract][Full Text] [Related]
10. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Brazeau BJ; Johnson BJ; Wilmot CM Arch Biochem Biophys; 2004 Aug; 428(1):22-31. PubMed ID: 15234266 [TBL] [Abstract][Full Text] [Related]
11. 2,4,5-Trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel. Samuels NM; Klinman JP Biochemistry; 2005 Nov; 44(43):14308-17. PubMed ID: 16245947 [TBL] [Abstract][Full Text] [Related]
12. Binding of dioxygen to non-metal sites in proteins: exploration of the importance of binding site size versus hydrophobicity in the copper amine oxidase from Hansenula polymorpha. Goto Y; Klinman JP Biochemistry; 2002 Nov; 41(46):13637-43. PubMed ID: 12427025 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Wilce MC; Dooley DM; Freeman HC; Guss JM; Matsunami H; McIntire WS; Ruggiero CE; Tanizawa K; Yamaguchi H Biochemistry; 1997 Dec; 36(51):16116-33. PubMed ID: 9405045 [TBL] [Abstract][Full Text] [Related]
14. Investigation of spectroscopic intermediates during copper-binding and TPQ formation in wild-type and active-site mutants of a copper-containing amine oxidase from yeast. Dove JE; Schwartz B; Williams NK; Klinman JP Biochemistry; 2000 Apr; 39(13):3690-8. PubMed ID: 10736168 [TBL] [Abstract][Full Text] [Related]
15. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584 [TBL] [Abstract][Full Text] [Related]
17. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504 [TBL] [Abstract][Full Text] [Related]
18. Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 A resolution reveals the active conformation. Li R; Klinman JP; Mathews FS Structure; 1998 Mar; 6(3):293-307. PubMed ID: 9551552 [TBL] [Abstract][Full Text] [Related]
19. Rates of oxygen and hydrogen exchange as indicators of TPQ cofactor orientation in amine oxidases. Green EL; Nakamura N; Dooley DM; Klinman JP; Sanders-Loehr J Biochemistry; 2002 Jan; 41(2):687-96. PubMed ID: 11781110 [TBL] [Abstract][Full Text] [Related]
20. Structural analysis of aliphatic versus aromatic substrate specificity in a copper amine oxidase from Hansenula polymorpha. Klema VJ; Solheid CJ; Klinman JP; Wilmot CM Biochemistry; 2013 Apr; 52(13):2291-301. PubMed ID: 23452079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]