These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 16519513)

  • 21. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants.
    Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ
    Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential.
    Murray JM; Kurtis CR; Tambyrajah W; Saysell CG; Wilmot CM; Parsons MR; Phillips SE; Knowles PF; McPherson MJ
    Biochemistry; 2001 Oct; 40(43):12808-18. PubMed ID: 11669617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase.
    Kim M; Okajima T; Kishishita S; Yoshimura M; Kawamori A; Tanizawa K; Yamaguchi H
    Nat Struct Biol; 2002 Aug; 9(8):591-6. PubMed ID: 12134140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of post-translational quinone formation in copper amine oxidases and its relationship to the catalytic turnover.
    Dubois JL; Klinman JP
    Arch Biochem Biophys; 2005 Jan; 433(1):255-65. PubMed ID: 15581581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase.
    Taki M; Murakawa T; Nakamoto T; Uchida M; Hayashi H; Tanizawa K; Yamamoto Y; Okajima T
    Biochemistry; 2008 Jul; 47(29):7726-33. PubMed ID: 18627131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic analysis of oxygen utilization during cofactor biogenesis in a copper-containing amine oxidase from yeast.
    Schwartz B; Dove JE; Klinman JP
    Biochemistry; 2000 Apr; 39(13):3699-707. PubMed ID: 10736169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits.
    Takahashi K; Klinman JP
    Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene organization and molecular modeling of copper amine oxidase from Aspergillus niger: re-evaluation of the cofactor structure.
    Frébort I; Sebela M; Hirota S; Yamada M; Tamaki H; Kumagai H; Adachi O; Pec P
    Biol Chem; 2003; 384(10-11):1451-61. PubMed ID: 14669988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of Cu(I)-dependent 2,4,5-trihydroxyphenylalanine quinone biogenesis in Hansenula polymorpha amine oxidase.
    Samuels NM; Klinman JP
    J Biol Chem; 2006 Jul; 281(30):21114-21118. PubMed ID: 16717088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of copper-free pig kidney amine oxidase: role of topa quinone.
    Mura A; Padiglia A; Medda R; Pintus F; Finazzi Agrò A; Floris G
    FEBS Lett; 2006 Aug; 580(18):4317-24. PubMed ID: 16842785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of the quinone cofactor in mammalian semicarbazide-sensitive amine oxidase.
    Holt A; Alton G; Scaman CH; Loppnow GR; Szpacenko A; Svendsen I; Palcic MM
    Biochemistry; 1998 Apr; 37(14):4946-57. PubMed ID: 9538013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure at 2.5 A resolution of zinc-substituted copper amine oxidase of Hansenula polymorpha expressed in Escherichia coli.
    Chen Z; Schwartz B; Williams NK; Li R; Klinman JP; Mathews FS
    Biochemistry; 2000 Aug; 39(32):9709-17. PubMed ID: 10933787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tyrosine-derived quinone cofactors.
    Mure M
    Acc Chem Res; 2004 Feb; 37(2):131-9. PubMed ID: 14967060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and biogenesis of topaquinone and related cofactors.
    Dooley DM
    J Biol Inorg Chem; 1999 Feb; 4(1):1-11. PubMed ID: 10499097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Replacement of Tyrosines by Unnatural Amino Acid Aminophenylalanine Leads to Metal-Mediated Aniline Free Radical Formation in a Copper Amine Oxidase.
    Koehn EM; Lang A; Flores A; Lambert C; Klinman J
    ACS Chem Biol; 2024 Jul; 19(7):1525-1532. PubMed ID: 38889186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism-based inactivation of a yeast methylamine oxidase mutant: implications for the functional role of the consensus sequence surrounding topaquinone.
    Cai D; Dove J; Nakamura N; Sanders-Loehr J; Klinman JP
    Biochemistry; 1997 Sep; 36(38):11472-8. PubMed ID: 9298967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases.
    Ling KQ; Sayre LM
    J Am Chem Soc; 2005 Apr; 127(13):4777-84. PubMed ID: 15796543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic comparison of the cobalt-substituted and wild-type copper amine oxidase from Hansenula polymorpha.
    Mills SA; Goto Y; Su Q; Plastino J; Klinman JP
    Biochemistry; 2002 Aug; 41(34):10577-84. PubMed ID: 12186541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction and characterization of a novel amine oxidase from the yeast Kluyveromyces marxianus.
    Corpillo D; Valetti F; Giuffrida MG; Conti A; Rossi A; Finazzi-Agrò A; Giunta C
    Yeast; 2003 Apr; 20(5):369-79. PubMed ID: 12673620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactions of copper(II)-phenol systems with O2: models for TPQ biosynthesis in copper amine oxidases.
    Tabuchi K; Ertem MZ; Sugimoto H; Kunishita A; Tano T; Fujieda N; Cramer CJ; Itoh S
    Inorg Chem; 2011 Mar; 50(5):1633-47. PubMed ID: 21284380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.