BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16519531)

  • 1. Measurement of thermodynamic parameters for hydrophobic mismatch 1: self-association of a transmembrane helix.
    Yano Y; Matsuzaki K
    Biochemistry; 2006 Mar; 45(10):3370-8. PubMed ID: 16519531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of thermodynamic parameters for hydrophobic mismatch 2: intermembrane transfer of a transmembrane helix.
    Yano Y; Ogura M; Matsuzaki K
    Biochemistry; 2006 Mar; 45(10):3379-85. PubMed ID: 16519532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of insertion and self-association of a transmembrane helix: a lipophobic interaction by phosphatidylethanolamine.
    Yano Y; Yamamoto A; Ogura M; Matsuzaki K
    Biochemistry; 2011 Aug; 50(32):6806-14. PubMed ID: 21749146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a soluble transmembrane helix for measurements of water-membrane partitioning.
    Yano Y; Shimai N; Matsuzaki K
    J Phys Chem B; 2010 Feb; 114(5):1925-31. PubMed ID: 20085245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein.
    Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL
    Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model.
    Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH
    J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of micelle formation in water, hydrophobic processes and surfactant self-assemblies.
    Fisicaro E; Compari C; Duce E; Biemmi M; Peroni M; Braibanti A
    Phys Chem Chem Phys; 2008 Jul; 10(26):3903-14. PubMed ID: 18688390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration.
    Ren J; Lew S; Wang Z; London E
    Biochemistry; 1997 Aug; 36(33):10213-20. PubMed ID: 9254619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of the lateral mobility of transmembrane peptides with hydrophobic mismatch.
    Gambin Y; Reffay M; Sierecki E; Homblé F; Hodges RS; Gov NS; Taulier N; Urbach W
    J Phys Chem B; 2010 Mar; 114(10):3559-66. PubMed ID: 20170092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological stability and self-association of a completely hydrophobic model transmembrane helix in lipid bilayers.
    Yano Y; Takemoto T; Kobayashi S; Yasui H; Sakurai H; Ohashi W; Niwa M; Futaki S; Sugiura Y; Matsuzaki K
    Biochemistry; 2002 Mar; 41(9):3073-80. PubMed ID: 11863446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy.
    Aisenbrey C; Goormaghtigh E; Ruysschaert JM; Bechinger B
    Mol Membr Biol; 2006; 23(4):363-74. PubMed ID: 16923729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch.
    Park SH; Opella SJ
    J Mol Biol; 2005 Jul; 350(2):310-8. PubMed ID: 15936031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a membrane protein folding motif, the Ser zipper, using designed peptides.
    North B; Cristian L; Fu Stowell X; Lear JD; Saven JG; Degrado WF
    J Mol Biol; 2006 Jun; 359(4):930-9. PubMed ID: 16697010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association.
    Lee J; Im W
    J Am Chem Soc; 2008 May; 130(20):6456-62. PubMed ID: 18422318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.