BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 16520011)

  • 1. Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis.
    Christensen LP; Brandt K
    J Pharm Biomed Anal; 2006 Jun; 41(3):683-93. PubMed ID: 16520011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities.
    Zidorn C; Jöhrer K; Ganzera M; Schubert B; Sigmund EM; Mader J; Greil R; Ellmerer EP; Stuppner H
    J Agric Food Chem; 2005 Apr; 53(7):2518-23. PubMed ID: 15796588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aliphatic C(17)-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family.
    Christensen LP
    Recent Pat Food Nutr Agric; 2011 Jan; 3(1):64-77. PubMed ID: 21114468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive Raman analysis of polyacetylenes in apiaceae vegetables.
    Roman M; Baranski R; Baranska M
    J Agric Food Chem; 2011 Jul; 59(14):7647-53. PubMed ID: 21682272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxic polyacetylenes from the marine sponge Petrosia sp.
    Kim JS; Lim YJ; Im KS; Jung JH; Shim CJ; Lee CO; Hong J; Lee H
    J Nat Prod; 1999 Apr; 62(4):554-9. PubMed ID: 10217707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triangulynes A-H and trangulynic acid, new cytotxic polyacetylenes from the marine sponge Pellina triangulata.
    Dai JR; Hallock YF; Cardellina JH II; Gray GN; Boyd MR
    J Nat Prod; 1996 Sep; 59(9):860-5. PubMed ID: 8991958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial activity of polyacetylenes from Bellis perennis and their synthetic derivatives.
    Avato P; Vitali C; Mongelli P; Tava A
    Planta Med; 1997 Dec; 63(6):503-7. PubMed ID: 9434600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-inflammatory active polyacetylenes from Bidens campylotheca.
    Redl K; Breu W; Davis B; Bauer R
    Planta Med; 1994 Feb; 60(1):58-62. PubMed ID: 8134419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyacetylenes from angelica gigas and their inhibitory activity on nitric oxide synthesis in activated macrophages.
    Choi YE; Ahn H; Ryu JH
    Biol Pharm Bull; 2000 Jul; 23(7):884-6. PubMed ID: 10919371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng.
    Rho MC; Lee HS; Lee SW; Chang JS; Kwon OE; Chung MY; Kim YK
    J Agric Food Chem; 2005 Feb; 53(4):919-22. PubMed ID: 15712998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First stereoselective syntheses of (-)-siphonodiol and (-)-tetrahydrosiphonodiol, bioactive polyacetylenes from marine sponges.
    López S; Fernández-Trillo F; Midón P; Castedo L; Saá C
    J Org Chem; 2005 Aug; 70(16):6346-52. PubMed ID: 16050696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignans, phenylpropanoids and polyacetylenes from Chaerophyllum aureum L. (Apiaceae).
    Rollinger JM; Zidorn C; Dobner MJ; Ellmerer EP; Stuppner H
    Z Naturforsch C J Biosci; 2003; 58(7-8):553-7. PubMed ID: 12939043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of on-flow LC/1H NMR for the study of an antioxidant fraction from Orophea enneandra and isolation of a polyacetylene, lignans, and a tocopherol derivative.
    Cavin A; Potterat O; Wolfender JL; Hostettmann K; Dyatmyko W
    J Nat Prod; 1998 Dec; 61(12):1497-501. PubMed ID: 9868150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Polyacetylenes, DGAT inhibitors from the roots of Panax ginseng.
    Lee SW; Kim K; Rho MC; Chung MY; Kim YH; Lee S; Lee HS; Kim YK
    Planta Med; 2004 Mar; 70(3):197-200. PubMed ID: 15114494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brominated polyacetylenes from the Philippines sponge Diplastrella sp.
    Lerch ML; Harper MK; Faulkner DJ
    J Nat Prod; 2003 May; 66(5):667-70. PubMed ID: 12762803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial tissue distribution of polyacetylenes in carrot root.
    Baranska M; Schulz H
    Analyst; 2005 Jun; 130(6):855-9. PubMed ID: 15912233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiproliferative constituents in Umbelliferae plants II. Screening for polyacetylenes in some Umbelliferae plants, and isolation of panaxynol and falcarindiol from the root of Heracleum moellendorffii.
    Nakano Y; Matsunaga H; Saita T; Mori M; Katano M; Okabe H
    Biol Pharm Bull; 1998 Mar; 21(3):257-61. PubMed ID: 9556156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive C₁₇-Polyacetylenes in Carrots (Daucus carota L.): Current Knowledge and Future Perspectives.
    Dawid C; Dunemann F; Schwab W; Nothnagel T; Hofmann T
    J Agric Food Chem; 2015 Oct; 63(42):9211-22. PubMed ID: 26451696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and pharmacological progress on polyacetylenes isolated from the family apiaceae.
    Chen Y; Peng S; Luo Q; Zhang J; Guo Q; Zhang Y; Chai X
    Chem Biodivers; 2015 Apr; 12(4):474-502. PubMed ID: 25879495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.