BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 16520337)

  • 41. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RASE: recognition of alternatively spliced exons in C.elegans.
    Rätsch G; Sonnenburg S; Schölkopf B
    Bioinformatics; 2005 Jun; 21 Suppl 1():i369-77. PubMed ID: 15961480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide analysis of SINA family in plants and their phylogenetic relationships.
    Wang M; Jin Y; Fu J; Zhu Y; Zheng J; Hu J; Wang G
    DNA Seq; 2008 Jun; 19(3):206-16. PubMed ID: 17852340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.
    Lopato S; Waigmann E; Barta A
    Plant Cell; 1996 Dec; 8(12):2255-64. PubMed ID: 8989882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences.
    Kondrashov FA; Koonin EV
    Trends Genet; 2003 Mar; 19(3):115-9. PubMed ID: 12615001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis.
    Schöning JC; Streitner C; Meyer IM; Gao Y; Staiger D
    Nucleic Acids Res; 2008 Dec; 36(22):6977-87. PubMed ID: 18987006
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overexpression of the rFCA RNA recognition motif affects morphologies modifications in rice (Oryza sativa L.).
    Hong F; Attia K; Wei C; Li K; He G; Su W; Zhang Q; Qian X; Yang J
    Biosci Rep; 2007 Oct; 27(4-5):225-34. PubMed ID: 17597396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana.
    de Longevialle AF; Hendrickson L; Taylor NL; Delannoy E; Lurin C; Badger M; Millar AH; Small I
    Plant J; 2008 Oct; 56(1):157-68. PubMed ID: 18557832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of rice nuclear proteome analysis to the identification of evolutionarily conserved and glucose-responsive nuclear proteins.
    Aki T; Yanagisawa S
    J Proteome Res; 2009 Aug; 8(8):3912-24. PubMed ID: 19621931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. UPF3 suppresses aberrant spliced mRNA in Arabidopsis.
    Hori K; Watanabe Y
    Plant J; 2005 Aug; 43(4):530-40. PubMed ID: 16098107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA.
    Isshiki M; Tsumoto A; Shimamoto K
    Plant Cell; 2006 Jan; 18(1):146-58. PubMed ID: 16339852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide analyses of alternative splicing in plants: opportunities and challenges.
    Barbazuk WB; Fu Y; McGinnis KM
    Genome Res; 2008 Sep; 18(9):1381-92. PubMed ID: 18669480
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins.
    Bonen L; Calixte S
    Mol Biol Evol; 2006 Mar; 23(3):701-12. PubMed ID: 16368778
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Suppression of an atypically spliced rice CACTA transposon transcript in transgenic plants.
    Greco R; Ouwerkerk PB; Pereira A
    Genetics; 2005 Apr; 169(4):2383-7. PubMed ID: 15687269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mosses share mitochondrial group II introns with flowering plants, not with liverworts.
    Pruchner D; Nassal B; Schindler M; Knoop V
    Mol Genet Genomics; 2001 Dec; 266(4):608-13. PubMed ID: 11810232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A large plant beta-tubulin family with minimal C-terminal variation but differences in expression.
    Jost W; Baur A; Nick P; Reski R; Gorr G
    Gene; 2004 Sep; 340(1):151-60. PubMed ID: 15556303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Splicing signals and factors in plant intron removal.
    Brown JW; Simpson CG; Thow G; Clark GP; Jennings SN; Medina-Escobar N; Haupt S; Chapman SC; Oparka KJ
    Biochem Soc Trans; 2002 Apr; 30(2):146-9. PubMed ID: 12023842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-affinity sodium uptake in land plants.
    Haro R; Bañuelos MA; Rodríguez-Navarro A
    Plant Cell Physiol; 2010 Jan; 51(1):68-79. PubMed ID: 19939835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome-Wide Identification of Cassava Serine/Arginine-Rich Proteins: Insights into Alternative Splicing of Pre-mRNAs and Response to Abiotic Stress.
    Gu J; Ma S; Zhang Y; Wang D; Cao S; Wang ZY
    Plant Cell Physiol; 2020 Jan; 61(1):178-191. PubMed ID: 31596482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.